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Purpose. The research aims to develop recommendations for reducing the maximum contact
stresses between the brake lining and the mine hoisting machine drum,

Methods. Existing methodologies for calculating shoe brakes of mine hoisting machines often
use a hypothesis that assumes absolute stiffness of the brake rim and beam. The developed method-
ology, using a set of various mathematical and engineering methods, makes it possible to determine
the pattern of contact pressure distribution depending on the ratio of the brake lining transverse stiff-
ness to the brake beam bending stiffness.

Findings. An analytical model of the brake beam, presented in the form of a circular bar of con-
stant section, has been developed, which is based on the Winkler elastic foundation concept, provid-
ing the ability to adapt the stiffness in accordance with the complex brake lining parameters. The
stress-strain analysis has identified a key dimensionless indicator — the relative lining stiffness, which
has a significant impact on the contact pressure distribution.

The research results are presented in the form of a comparative analysis of various design ap-
proaches used to provide a more uniform contact pressure distribution along the brake beam.

Originality. The proposed analytical model is based on the Winkler elastic foundation involving
variable stiffness parameters, which provides high accuracy in modeling the actual physical charac-
teristics of the braking system. This is far superior to traditional methodologies that are based on the
assumption of absolute component stiffness, thereby increasing the relevance and scientific value of
the results.

Practical implications. The proposed recommendations make it possible to optimize the design
of braking systems, reducing maximum contact stresses, thereby improving the efficiency, reliability
and durability of mine hoisting machines.

Keywords: braking system, mine hoisting machine, contact stresses, Winkler elastic foundation,
relative stiffness, analytical model, braking system optimization, finite element method, SolidWorks
Simulation.

Introduction. Increasing mining volumes require increasing the efficiency and re-
liability of mine hoisting machines (MHM). It is known that the primary means of pro-
tecting a hoisting plant from an accident is its braking system [1-3]. The actual technical
problem is to reduce the contact pressure of MHM shoe brakes, for the solution of which
it is necessary to study the influence of the brake beam (below referred to as beam)
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parameters on the pattern of contact pressure distribution and to create a refined meth-
odology for the development of MHM braking systems [4—6].

The papers [1, 2] present an improved mathematical model of brake shoe and
track system for drum brakes. The model makes it possible to calculate such brake
characteristics as braking coefficient, pressure distribution between the brake shoe and
track, as well as the braking torque, given the elastic properties of the brake compo-
nents and the initial contact geometry between them. The research methodology differs
from the traditional ones, which ignore elastic deformation and real contact geometry.

Scientific results show that the new model provides more accurate prediction of
braking system performance than existing methods, as confirmed by full-scale tests
and measurements. Special attention is paid to pressure distribution and braking track
movements.

While the paper provides an important contribution to understanding of braking
system dynamics, there are some disadvantages that may affect the overall perception
of its results. The paper states that the disagreement between theoretical predictions
and real measurements may be caused by errors in the measurement of components or
their assembly, but there is no clear strategy for addressing these differences in the
model. Although the paper proposes one model, it makes no comparison with other
potential approaches or models that could be used to analyze such systems, limiting the
reader’s ability to assess the proposed model relative effectiveness.

The study [3] presents a parametric modeling of a drum brake using 3D finite ele-
ment methods (FEM) to analyze non-contact interaction. The study is relevant due to the
need to improve the performance of drum brakes in automobiles, focusing on the aspects
of interface stiffness, friction coefficient and line pressure. The methodology is based on
the use of FEM for modal analysis of a drum brake to obtain its eigenfrequencies and to
study the system instability. The main scientific results include the effectiveness of using
an asymmetric computational solution for linear system behavior converted from non-
linear contact behavior. Based on the presented paper [3], the following disadvantages
can be identified. The paper focuses on theoretical modeling and analysis, but does not
provide enough data on experimental testing of theoretical models. Lack of detailed ex-
perimental data or comparison with real measurements may raise questions about the
practical suitability of the obtained results. The paper does not discuss the stability and
reliability of the proposed model during long-term operation, which is an important as-
pect for braking systems used in the automotive industry.

Problem statement. Many well-known scientists, namely B.L. Davydov, Z.M. Fe-
dorova, N.S. Karpyshev, V.I. Belobrov, V.F. Abramovskyi, V.l. Samusya and V.l. Va-
siliev, Z. Barecki, S.F. Scieszka, participated in the development of braking devices for
mine hoisting machines. The basic methodology for calculating the braking devices of a
mine hoisting machine is described in the works of B.L. Davydov, Z.M. Fedorova,
N.S. Karpishev. This methodology is based on the hypothesis that the brake rim and
beam are assumed to be absolutely stiff. In subsequent numerous works on improvement
of brake calculation methodology, dynamic and thermal processes occurring in the brak-
Ing system components were taken into account. Thus, in the works of V.I. Belobrov,
V.l. Samusya, V.F. Abramovskyi and V.l. Vasiliev, the issues of the hoisting plant
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dynamics at operating and emergency braking modes are considered. Most importantly,
the stiffness of the brake rim and beam has not been substantiated.

The results of calculating the stress-strain state for mine hoisting machine brakes
have some discrepancies with those described in the literature. For example, the pattern
of the contact pressure distribution along the brake beam is not sinusoidal with peak
values in the center of the shoe. On the contrary, it has a distinct edge effect, the so-
called U-shaped nature. Therefore, an urgent scientific task is to determine the factors
influencing the contact pressure distribution and determine the scope of the hypothesis
application of an absolutely stiff beam.

Main part of the research. A brake shoe model has been constructed to study
the impact of the factors [4, 5] — a constant cross-section circular beam on an elastic
base, loaded by two horizontal forces (Fig. 1). The following indications are used in
this figure: h — is the lining thickness; N — is the braking force acting on the shoe;
R — a brake rim radius; y — is the contact arc half; ¢ — is the current angular coordinate.

Fig. 1. Brake shoe computation model

Figure 1 shows a scheme of a brake beam in the form of a circle segment with a
radius R, which is under the action of horizontal forces N/2 applied at the edges. These
forces are constituents of the total force N, acting perpendicular to the figure plane and
distributed tangentially to the inner surface of the beam, simulating the braking mech-
anism action. The OXY coordinate system is centered at point O, which is the beam
segment curvature center. The angle y determines the sector within which the specified
uniformly distributed force is applied. The radial lines emanating from point O show
the directions of the distributed forces along the tangent forming the torque relative to
center O. The force vectors act in the direction opposite to the torque induced by the
tractive forces in the mining machine, the model of which is under study. Mark d¢
indicates the angle-differential element on which the distributed force is applied, that
Is, the small beam sector where the force acts.
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The £N/2 marks in the upper and lower parts of the figure indicate the points of
applied external forces. These forces generate contact pressure between the beam and
the brake lining and are critical to beam strength and durability calculations.

Calculations according to N.S. Karpyshev’s methodology are based on the fol-
lowing formulas:

Mt :BP—R; Pmax :$; N = PmaxBR(y +0,5siny),
n 2fBR“siny
where Mr — is the braking torque; pmax — IS the maximum contact pressure.

For example, consider the brake shoe of the mine hoisting machine of
CR-5x3.2/0.85 type with the following parameters: R = 2480 mm; B = 400 mm —is the
brake rim width; y=50°, H =400 mm — is the brake beam height; h =80 mm;
E =2.1x10" Pa— is the beam material elasticity modulus; E, = 3x10® Pa — is the lining
press material elasticity modulus 143 —63; P =2.06x10°> N — is the difference in the
static cable tensions; n =2 — is the number of brake beams; f=0.3 — is the friction
coefficient.

Results of calculations based on these formulas are as follows: Mt =772 kN - m;
Pmax = 0.68 MPa; N = 924.8 kN,

The following boundary conditions are used for modeling:

- horizontal forces N/2 are applied to the axles at the edges of the brake beam;

- the lining is fixed against movements in the radial direction;

- the central beam axis is fixed against movements in the vertical direction.

An analytical solution to this problem was obtained from the study of the bicycle
wheel strength by F.V. Feodosiev and A.H. Zhukovsky.

When developing the mathematical model, equilibrium equations play a key role
in determining the dynamic properties of the system. The equations are as follows:

S—T+Q+rR:O; (1)

¢

D _1-r=0 @)
¢

(Z—M+QR:O, 2)
¢

where T —is the longitudinal force in the beam; Q — is a shearing force; M —is a bending
moment; g — is distributed contact force; T — is distributed friction force.
The distributed contact force is determined as:

q=-kw, (4)
where w — is the beam deflection; k — is the transverse lining stiffness.
k=E,B/h, (5)

where E, — is the lining material elasticity modulus.
The equation for the distributed friction force has the following form:
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t=fkw (6)
Hooke’s law for the torque in a beam is formulated as:
M = —E@, (7)
R do
where E — is the beam material elasticity modulus; | — is the beam section inertia mo-
ment.
Kinematic dependence is specified as:
o=<| W,y (®)
Rl do

where v — is the tangential displacement.
The inextensibility condition is determined as follows:

w=dv/deo. 9)

By substituting expressions (4-9) into equation (1-3), we have:

5 3 3
Eé d\év+dv3:/ +deW+E; d\;v+dw + fkRw =
R\ doe~ do do R°(de> do
6 4 2 4 2 (10)
:E; d\é+dZ+de\2/+E; dZ+d\2/+fkR£:O.
R°{de” do do R2{doe" do do

Equation (10) is a complex dependence that includes both physical and geometric
parameters of the system, allowing a detailed analysis of the stress distribution in the
beam and lining.

Determine the relative stiffness A as the ratio of the transverse lining stiffness to
the bending stiffness of the beam:

A =EBR*/hEl,

where E, — is the lining material elasticity modulus, B — is the lining width, R — is the
beam radius, h — is the lining thickness, E — is the beam material elasticity modulus, | —
Is the beam section inertia moment.
Accordingly, the equation (10) takes the following form:
6 4 2
av +2 v +(1+K)M+ fxﬂzo.
d(p6 d(p4 d(p2 do

Its characteristic equation is:

n(n5 +2n° +@+A)n+ fx)zo.

Since the influence of friction is insignificant, we ignore it.
By substituting n> = m, we have
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m(m? +2m+1+21) =0.
For the studied machine, the following roots of this equation can be obtained:
0;
m={—1+J-A =—1+i-12,3;

1A =-1-i-12.3.

Hence, n is:

0

0

2,35+ 2,56i
—2,35—2,56i
2,35—2,56i
2,35+ 2,56i

Force boundary conditions:
M(y)=0; Q(%)= %0057; TO) = %sin .

Finally, the contact pressure distribution formula along the lining has the form:

g(h,0) =Kk (Co+ sh(a)sinBe(BC;—aC,) + ch(ap)cosPe(aCqi+ BCZ)) /B,
(11)

where Cq =+/A (ch(ay) cosBy(BCy — aCy) +sh(owy)sin By(aCy +BCy)).
Other coefficients are determined as follows:

C _BiAyy —BoAp . C _BoA1-BiAyg,
1= 2= ;

Bo Bo

Bo = A11Av2 — Ao Aog;

N . _NRS
=——sSIny; By, =
B =R 2 O hEl

Coefficients A1, Ao, A1, Ao depend on a, B, @, v:
Ay 1 =Bsh(ae)cosPe + ach(ap)sinBe; Ajp =—ash(ae)cosPe + Bch(ag)sinPeo;
Ay =— ﬁsh(ay) cosPBy + ch(ay)sinBy; Apq =—sh(ay)cosPy — \/Xch(ocy)sin By;

0 =1/0,5(-1+V1+1); B=+0,50+1+1).

Introduce the notion of relative pressure x(A, @) as the ratio of contact pressure to
the pressure caused by the same force N acting on an absolutely stiff part of the same
area F=B-R-2y.

COS Y.
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Plot the dependency graph of y(A, @) distribution on the relative stiffness A
(Fig. 2). This graph illustrates how the relative stiffness of a structure affects the con-
tact pressure distribution pattern in a braking system.

The solid line corresponds to the value of A = 1 and shows a relatively flat and
symmetrical pressure distribution relative to the axis ¢ = 0. Dashed line A = 10 already
has a more distinct curvature, with peak pressure values located closer to the center
(¢ = 0). The dot-and-dash line for A = 100 shows even greater curvature with a higher
peak in the center. The dotted line for A = 1000 shows even greater centralized peak
pressure, which is most different from the other curves.

As A increases, that is, when the lining transverse stiffness is much higher than
the beam bending stiffness, the peak of contact pressure is concentrated in the central
part of the beam, which can lead to local overloading and consequently to material
fatigue. In actual conditions, this may indicate a need to strengthen the central beam
part or optimize the brake lining to achieve a more uniform pressure distribution.

Analyzing the above graph, it should be noted that the nature of x(A, ¢) distribu-
tion can be roughly divided into two main types. The maximum values of y(A, ¢) occur
at the brake beam edges, indicating local stresses in these areas that may be critical for
material fatigue and its durability. The y(A, ¢) distribution is sinusoidal in nature with
a peak in the brake beam center, indicating a greater stress state uniformity in the mid-
dle beam part. From this it follows that there is an optimal relative stiffness value at
which the values of y(), ¢) at the edges and in the middle of the brake beam are equal-
ized. Plot the dependency graph of (A, @) at the edges and in the middle of the brake
beam on the relative stiffness (Fig. 3).

This approach not only clarifies the relative stiffness critical values, but also pro-
vides an opportunity to develop improved design solutions to increase the efficiency
of braking systems, reducing material fatigue and increasing the brake beam durability.

61
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Fig. 2. Dependence of reduced pressure  Fig. 3. Dependence of reduced pressure
distribution on relative stiffness A on relative stiffness A

The graph shows three curves, each representing a different aspect of the pressure
distribution. Curve 1 (solid line) shows the change in x(A, ¢) at the brake beam edge.
Curve 2 (dotted line) represents the change in (A, ¢) in the middle of the beam. Curve
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3 (dot-and-dash line) represents the ratio of y(A, ¢) at the edge to the pressure in the
middle of the beam. As the relative stiffness A increases, y(A, @) at the edge of the beam
increases, while it decreases or remains relatively stable in the middle of the beam. The
ratio of pressure at the edge to the pressure in the middle (curve 3) shows that at low
values of A, the pressure at the edges is lower than in the middle, but as A increases, the
situation changes — the pressure at the edges becomes higher. The vertical line, num-
bered 5.3, indicates the theoretically optimal value of A, at which y(A, @) is expected to
be the same at the edges and in the middle of the beam, that is, the desired pressure
distribution uniformity is achieved.

This analysis can be used to design braking systems to provide a more uniform
pressure distribution along the beam, which can improve system performance and re-
duce the risk of premature wear or damage due to non-uniform loading. For a given
machine, calculated using an analytical model:

My = fRzﬁﬂ(@)O'(P:??Z KN-m; p(o) =%@,

the maximum p is achieved with angle equal to y and is 1.58 Mpa
N,= Rﬁyq((p)COS(pd(p:829 KN.

Figure 4 presents two curves comparing the contact pressure distribution in the
braking system. Curve 1 (solid line) shows the contact pressure distribution according
to N.S. Karpyshev’s model. Curve 2 (dotted line) shows the contact pressure distribu-
tion according to the developed analytical model. According to N.S. Karpyshev’s
model, the contact pressure has lower values compared to the analytical model, which
may indicate a potential underestimation of the risk of fatigue failure of the braking
system material when it is used. The analytical model shows a higher contact pressure
in the central part of the brake beam, which may indicate a more realistic load distri-
bution in real-life operating conditions. The comparison shows that the analytical
model can be more accurate in predicting the pressure distribution, and therefore may
be a better choice for determining the required strength and durability of brake beams.
It is noted that N.S. Karpyshev’s model assumes 10.3 % higher horizontal forces and
2.32 times lower contact pressures than the analytical model, which may be inadequate
for high safety and reliability requirements of braking systems. This graph is therefore
an important tool for choosing between theoretical models and for making adjustments
in the design and operation of braking systems to minimize the risk of material fatigue
and improve equipment reliability.

Figure 5 shows three curves that illustrate x(A, @) distribution from o.

Curve 1 (solid line) shows the results of the analytical solution for the relative
stiffness A = 5.3. Curve 2 (dotted line) shows the results of a computational experiment
for the same relative stiffness A = 5.3. Curve 3 (dot-and-dash line) represents the com-
putational experiment results for A = 3.5.
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Fig. 4. Contact pressure distribution Fig. 5. Comparison of the results of an
analytical solution and a computational
experiment

The following conclusions can be drawn from the analysis of the graph: the ana-
lytical solution and the computational experiment at A = 5.3 show a difference in the
pressure distribution, but maintain the general distribution trend; the pressure distribu-
tion for both methods becomes maximum in the middle of the ¢ range and decreases
as it approaches the edges; when the relative stiffness decreases to A = 3.5 (curve 3), a
more uniform pressure distribution with less distinct pressure peaks is observed, indi-
cating a reduction in local overloads.

The255eviatrence in the results of the analytical solution and the computational
experiment does not exceed 33 %, which indicates a sufficient similarity of the meth-
odologies and their suitability for engineering calculations. These results can be im-
portant in the design and optimization of braking systems, where it is necessary to
achieve a uniform pressure distribution to reduce the probability of fatigue material
failure and increase the brake beam durability.

The results obtained make it possible to formulate a methodology for developing
a brake shoe design with the most uniform distribution of contact stresses, including
the following steps:

1. Performing a computational experiment using SolidWorks Simulation program
for a beam of a real structure, while determining deflections and contact pressures.

2. Determining, based on graph 3, the appropriate optimal relative stiffness value
and coefficient j of change in this parameter to achieve uniform pressure distribution.

3. Reducing the lining material elasticity modulus by j times.

4. Determining the appropriate contact pressure distribution by means of a com-
putational experiment.

5. If necessary, adjusting the coefficient j value using the iterative method to
equalize the contact pressure and deflection values.

6. Development of a brake shoe design providing the obtained relative stiffness
value.
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7. Testing the pressure distribution for the developed brake shoe design using a
computational experiment in SolidWorks Simulation.

This approach will optimize the brake shoe design, which will improve the brak-
ing system efficiency and help reduce material fatigue, extending the service life of the
equipment.

Figure 6 illustrates the contact pressure distribution for various parameters of the
material elasticity modulus and the relative stiffness of the beam: curve 1 (solid line)
corresponds to a real structure beam with material elasticity modulus E;= 300 MPa and
relative stiffness A = 149; curve 2 (dotted line) represents the real structure beam with
material elasticity modulus E;= 10.65 MPa and relative stiffness A = 7.74; curve 3 (dot-
and-dash line) shows a real structure beam with material elasticity modulus
E = 7.29 MPa and relative stiffness A = 5.83.

Analyzing the given curves, the following conclusions can be drawn. As the ma-
terial elasticity modulus and the beam relative stiffness increase, the uniformity of con-
tact pressure distribution decreases, resulting in increased peak pressures at the edges.
Curve 1 shows a significant non-uniform distribution with a high pressure concentra-
tion at the edges, which may indicate a risk of local material overloads and fatigue.
Curves 2 and 3 illustrate a reduction in the difference between peak and average pres-
sure values, which promotes a more uniform distribution and potentially increases
beam durability. Reducing the material elasticity modulus by 28 times makes it possi-
ble to achieve a contact pressures distribution with a deviation from uniform of no more
than 5 %, indicating the effectiveness of this method in optimizing the brake shoe prop-
erties.

Given the results of this experiment, it can be concluded that it is advisable to
adapt the brake shoe material properties to achieve optimal relative stiffness and im-
prove the braking system efficiency. There are two fundamentally different approaches
to constructively achieving relative stiffness reduction. The first is to increase the beam
bending stiffness, which can be achieved by increasing the brake beam thickness at its
edges and using radial stiffeners on the sides. The second method is to reduce the trans-
verse stiffness of the lining, which can be achieved by inserting a spacer gasket of
flexible material between the beam and the lining.

In the context of these strategies, a series of computational experiments have been
conducted to optimize the beam thickness [6]. As a result, the brake beam design for
the mine hoisting machine of CR-5x3.2/0.85 type (Fig. 7, @) has been modified as fol-
lows (Fig. 7, b). Radial stiffeners in the form of 20 mm thick transverse stiffening ribs
were applied. Thus, the thickness of the beam at the edges has been increased by 1.5
times compared to the middle. A layer of rubber, the thickness of which corresponds
to the thickness of the lining, was added between the beam and the press material lin-

ing.
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Fig. 6. Computational experiment results Fig. 7. Design solution to increase
bending stiffness of the real structure
beam

The addition of radial stiffeners has no significant effect on the contact pressure
distribution and is not in itself appropriate. Adding a rubber spacer gasket, the thickness
of which is commensurate with the lining thickness reduces the coefficient | by more
than half and is the most effective method for reducing contact pressures.

The research has revealed that the introduction of radial stiffeners does not signif-
icantly affect the contact pressure distribution and may not be considered appropriate
in this context. Instead, using the rubber spacer gasket, the thickness of which corre-
sponds to the lining thickness, reduces the A coefficient by more than half, which is the
most effective way to reduce contact pressures.

The table presents the results of modeling the design solutions to reduce the rela-
tive stiffness.

Table
Results of modeling the design solution
: Ratio of contact pressure
Maximum contact Beam
values at the edge of the
Model pressure : . mass,
MP beam to values in the mid- fon
Pmax, Ve dle of the beam
Real structure 3.45 14.71 1.71
Radial stiffening 3.06 12.82 2.23
Increasing the beam 5 39 1117 538
thickness
Adding a layer of rub-
ber between the beam 2.02 6.75 1.71
and the lining
AII of the above men- 1.40 293 598
tioned
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The results show a significant reduction in the maximum contact pressure and an
optimization of the contact pressure ratio, indicating the success of the chosen beam
design modification methods.

The research has revealed that the introduction of radial stiffeners does not have
a significant effect on the contact pressure distribution and cannot be considered ap-
propriate in this context. Instead, using the rubber spacer gasket, the thickness of which
corresponds to the lining thickness, reduces the (A, @) coefficient by more than half,
which is the most effective method for reducing contact pressures.

Conclusions.

1. The characteristic of contact pressure distribution (A, ¢) correlates with the
relative stiffness value A and tends to change from sinusoidal to a U-shaped.

2. It has been determined that for a mine hoisting machine of CR-5%3.2/0.85 type,
the contact pressure distribution along the brake beam has a U-shaped configuration,
while calculations using N.S. Karpyshev’s methodology indicate a sinusoidal charac-
ter, which underestimates the maximum contact pressures for this machine by 2.32
times.

3. Sinusoidal law of contact pressure distribution is typical for braking devices
with a relative stiffness value of less than 1.45.

4. A technology has been developed to achieve a uniform contact pressure distri-
bution between the brake disc and lining, the main stages of which are:

e conducting a computational experiment using SolidWorks Simulation software
for a beam of a real structure with determination of deflections and contact pressures;

e determining the optimal relative stiffness value and coefficient j in order to im-
plement a uniform pressure distribution;

¢ reducing the lining material elasticity modulus by j times;

e determination of the appropriate contact pressure distribution by means of a
computational experiment;

¢ refining the coefficient j value using the iterative method,;

o development of a brake shoe design providing the obtained relative stiffness
value.

5. To reduce the relative stiffness A, it is more effective to use a spacer gasket
made of flexible material, the thickness of which is equivalent to that of the lining than
to change the shape of the beam.

6. The existing methodology for calculating shoe brakes, assuming the hypothesis
of absolute brake beam stiffness and described in the works of B.L. Davydov,
N.S. Karpyshev and Z.M. Fedorova, underestimates the values of maximum contact
pressures by 2.32 times.

7. Application of the recommendations developed by the authors will reduce the
maximum contact pressure in shoe brakes of mine hoisting machines.
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AHOTANIA
MeTor0o poGoTH € po3poOKa peKOMEHAAIIH I 3HKEHHS MAKCUMAIIbHUX KOHTAaKTHUX HANpyKeHb
MK TraJbMiBHOIO HAKJIAIKOIO Ta 6apabaHOM IMIaXTHOT MiiiMaTbHOI MAIlIUHH.

MeToauka. [cHYI0Yi METOIMKH PO3PAaXyHKY KOJOAKOBHUX rajibM IIAXTHHUX MiAiHMaTbHUX MAIIHH Ya-
CTO BUKOPHCTOBYIOTb TilOTE3Y, KA MPHUITYCKAa€e aOCOIOTHY KOPCTKICTh TaTbMiBHOTO 000/1a Ta rajb-
MiBHOT Oanku. Po3pobiena MeTouKa, sika BAKOPUCTOBYE KOMIUIEKC PI3HOMAHITHUX MaTeMaTUIHHUX
Ta IHKEHEPHHUX METO/IiB, J03BOJISIE BU3HAYATH XapaKTeP PO3NOILTY KOHTAKTHUX THUCKIB, 3aJI€XKHO Bijl
CIIIBBiIHOIIEHHS ITONIEPEYHOT JKOPCTKOCTI TaIbMIBHOT HAKJIQAKH JI0 3THHAIBHOI dKOPCTKOCTI TaJIbMi-
BHO{ OaJIKu.

PesyabTaT. Po3po0ieHo aHaMITHUHY MOJEIb IajJbMiBHOI OalKH, MpeACTaBlIeHy Y BUIIIAI KPYTro-
BOro Opyca MocTiiiHOro nepepizy, sfika IpyHTY€EThCSl Ha KOHIleniii BiHKIepiBCbKOro 0cCHOBH, 3a0€3-
MeYyr4r MOXJIMBICTh aJanTalii >KOpCTKOCTI BIAMOBIAHO 10 MapaMeTpiB CKIAJHOI IajJbMiBHOI Ha-
KJIQAKU. AHaJ3 HanpyKeHO-1e(pOPMOBAHOIO CTaHy J03BOJIMB 11€HTU(IKYBATH KIOYOBUNA O€3p03-
MipHUI TOKa3HUK — BIIHOCHY >KOPCTKICTh HAKJIAJKH, 5IKA CYTTEBO BIIMBAE HA PO3ITO/I171 KOHTAKTHOT'O
TUCKY. Pe3ynbpTaT 1oCHiKeHb IpeICTaBlIeHl y (popMi MOPIBHSUIBHOTO aHAJI3Y PI3HUX KOHCTPYKTH-
BHUX IIJIXO/IB, 110 BUKOPUCTOBYIOTHCS JJIs 3a0€3MeUeHHs OUIbII PIBHOMIPHOTO PO3MOJILITY KOHTAK-
THOTO TUCKY B3/I0BX TraJbMIBHOI OaJIKH.

HaykoBa HoBu3HAa. 3anporoHOBaHa aHAJIITUYHA MOJIeb 0a3yeThbes Ha BiHkIepiBChbKill OCHOBI 13 3a-
Jy4eHHSIM [apaMeTpiB 3MIHHOI JKOPCTKOCTI, 1110 3a0e31euy€e BUCOKY TOUHICTh MOJICIOBAHHS peajlb-
HUX (I3UYHUX XapaKTEePUCTUK TalIbMIBHOT cucTeMH. Lle 3HauHO mepeBepiiye TpaauiliifHi METO0J10-
rii, KOTp1 ONUPAOTHCS HA MPUITYIIEHHS PO a0COMIOTHY KOPCTKICTh KOMIIOHEHTIB, TUM CAMUM TiJI-
BUIIYIOUH PEJIEBAHTHICTh 1 HAYKOBY LIIHHICTh PE3YJIbTaTIB.

IIpakTnyHa HiHHiCTH. 3aNPONOHOBaHI PEKOMEH 1ALl JO3BOJISAIOTh ONTHUMI3yBaTH KOHCTPYKIIIIO Ta-
JBMIBHUX CHCTEM, 3HWKYIOUM MaKCHMallbHI KOHTAKTHI HANPY>KEeHHS, 1110 CIIPUSE MiIBULIICHHIO ede-
KTUBHOCTI, HaJIMHOCTI Ta JOBrOBIYHOCTI IIAXTHUX IMAIAMaIbHUX MallvH.

Knrwuoei cnoea: canvmisna cucmema, waxmua nioitiManoHa MAwuHd, KOHMAKMHI HANPYIHCEHH,

Binuknepiscoke 0cHo8y8aHHSA, 8I0HOCHA HCOPCMKICMb, AHATIMUYHA MOOEb, ONMUMI3AYIS 2ATbMIBHUX
cucmem, memoo Kinyesux enemenmis, SolidWorks Simulation.
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