Mathematical simulationof the crush zone of a rock mass by a borehole charge of explosive substance along the shock adiabat of the rock
V. Sobolev1, https://orcid.org/0000-0003-1351-6674
M. Kononenko1, https://orcid.org/0000-0002-1439-1183
O. Khomenko1, https://orcid.org/0000-0001-7498-8494
A. Kosenko1 https://orcid.org/0000-0003-3058-4820
1 Dnipro University of Technology, Dnipro, Ukraine
Coll.res.pap.nat.min.univ. 2025, 82:65-80
Full text (PDF)
https://doi.org/10.33271/crpnmu/82.065
ABSTRACT
Purpose. Setting the parameters of the crush zone during the destruction of a rock mass by a borehole charge of explosives, taking into account the shock adiabat of a given rock.
The methodology of research. The calculation methodology of shock-wave parameters of rocks taking into account shock adiabats and the laws of elasticity theory was used, analytical simulation of the parameters of formation of the crush zone of the rock mass around the borehole under explosive loading was carried out. Numerical simulation of the crush zone by the finite element method was carried out for the change in the stress-strain state of the mass under the action of the explosion. To establish the suitability of the obtained analytical model for calculating the radius of the specified zone, a comparison of the results of analytical and numerical simulation was carried out.
Findings. An analytical model of the radius of the crush zone formed in the rock mass during blasting of a borehole charge has been developed based on the shock adiabat of the rock, taking into account the borehole diameter, the pressure value and the mass velocity of rock particles at the contact of the explosive with the rock and its tensile-compressive strength limits. A comparison of the results of the study of the mathematical model of the radius of the crush zone based on the shock adiabat of the rock with the previously obtained analytical model calculated based on the pressure of the explosion products revealed a discrepancy of no more than 6 %. A comparison of the results of analytical estimates of the radius of the crush zone with the results of numerical modeling revealed a discrepancy in the radius of the specified zone within 5 %.
The originality. The radius of the crush zone formed in the rock mass during blasting of a borehole charge changes according to a power law dependence on the borehole diameter, pressure and mass velocity of rock particles at the contact of the explosive with the rock and the tensile-compressive strength limits of the rock, which allows us to estimate the parameters of destruction of the rock mass in the nearby blast zone.
Practical implications.The mathematical model of the radius of the crush zone along the shock adiabat of the rock formed in the rock mass around the borehole under the action of the explosion determines the parameters of the destruction of the rock mass in the nearby explosion zone.
Keywords: rock mass, borehole, explosive, rock shock adiabat, crush zone.
References
1. Myronova, I. (2015). The level of atmospheric pollution around the iron-ore mine. New Developments In Mining Engineering 2015, 193–197. https://doi.org/10.1201/b19901-35
2. Myronova, I. (2016). Prediction of contamination level of the atmosphere at influence zone of iron-ore mine. Mining of Mineral Deposits, 10(2), 64–71. https://doi.org/10.15407/mining10.02.0064
3. Efremov, E.I., Komir, V.M., Myachina, N.I., Nikiforova, V.A., Rodak, S.N., & Shelenok, V.V. (1980). Influence of the structure of a medium on fragment-size composition in blasting. Soviet Mining Science, 16(1), 18–22. https://doi.org/10.1007/bf02504281
4. Mosinets, V.N. (1966). Mechanism of rock breaking by blasting in relation to its fracturing and elastic constants. Soviet Mining Science, 2(5), 492–499. https://doi.org/10.1007/bf02497640
5. Drukovanyi, M.F., Komir, V.M., Myachina, N.I., Rodak, S.N., & Semenyuk, E.A. (1973). Effect of the charge diameter and type of explosive on the size of the overcrushing zone during an explosion. Soviet Mining Science, 9(5), 500–506. https://doi.org/10.1007/bf02501378
6. Krysin R.S., Novinskiy V.V. (2006). Models of explosive crushing of rocks.
7. Krysin, R.S. (1990). Effect of detonation product outflow on cavity cross-section. Soviet Mining Science, 26(6), 518–521. https://doi.org/10.1007/bf02499448
8. Sytenkov, V.N., & Kochetov, A.V. (2003). Forecast of dust/gas conditions in deep quarries. Gornyi Zhurnal, (8), 86–89.
9. Prokopenko, V.S. (2010). Blasting rocks with borehole charges of explosives in sleeves.
10. Prokopenko, V.S., & Turuchko, I.I. (2010). Znyzhennia stepeni perepodribnennia fliusovykh vapniakiv pry vybukhakh sverdlovynnykh zariadiv v rukavakh. Visnyk NTUU «KPI». Seriia «Hirnytstvo», (19), 63–70.
11. Adushkin, V.V., Budkov, A.M., & Kocharyan, G.G. (2007). Features of forming an explosive fracture zone in a hard rock mass. Journal of Mining Science, 43(3), 273–283. https://doi.org/10.1007/s10913-007-0028-0
12. Danilenko V.V. (2010). Explosion: physics, engineering, technology.
13. Borovikov, V.A., Artemov, V.A., Vanyagin, I.F., Ermolaev, I.Yu., Kozlov, E.N., & Kucheryavyi, V.F. (1985). Influence of an axial cavity in a cylindrical charge on stress wave parameters. Soviet Mining Science, 21(6), 505–510. https://doi.org/10.1007/bf02499798
14. Sobolev, V. V., Kulivar, V. V., Kyrychenko, O. L., Kurliak, А. V., & Balakin, О. O. (2020). Evaluation of blast wave parameters within the near-explosion zone in the process of rock breaking with borehole charges. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 47–52. https://doi.org/10.33271/nvngu/2020-2/047
15. Butyagin, P. Y. (1971). Kinetics and Nature of Mechanochemical Reactions. Russian Chemical Reviews, 40(11), 901–915. https://doi.org/10.1070/rc1971v040n11abeh001982
16. Butyagin, P.Y. (2006). Chemical physics of solids.
17. Sobolev, V.V., Hapieiev, S.V., Skobenko, O.V., Kulivar, V.V., & Kurliak, A.V. (2022). Оn the mechanism of ionization of atoms at f compression of a substance converging by front of the shock wave. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 57–66. https://doi.org/10.33271/nvngu/2022-3/057
18. Kononenko, M., & Khomenko, O. (2021). New theory for the rock mass destruction by blasting. Mining of Mineral Deposits, 15(2), 111–123. https://doi.org/10.33271/mining15.02.111
19. Kononenko, M., Khomenko, O., Sadovenko, I., Sobolev, V., Pazynich, Yu., & Smolinski, A. (2023). Managing the rock mass destruction under the explosion. Journal of sustainable mining, 22(3), 240–247. https://doi.org/10.46873/2300-3960.1391
20. Sobolev, V.V., Skobenko, O.V., Kononenko, М.M., Kulivar, V.V., & Kurlyak, А.V. (2023). Profiled detonation waves in the technologies of explosion treatment of metals. Metallofizika i noveishie tekhnologii, 45(11), 1349–1384. https://doi.org/10.15407/mfint.45.11.1349
21. Sobolev V.V., Shiman, L.N., Nalisko, N.N., & Kirichenko, A.L. (2017). Сomputational modeling in research of ignition mechanism of explosives by laser radiation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 53–60.
22. Sobolev, V.V., Ustimenko, Ye.B., Nalisko, M.M., & Kovalenko, I.L. (2018). The macrokinetics parameters of the hydrocarbons combustion in the numerical calculation of accidental explosions in mines. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 89–98. https://doi.org/10.29202/nvngu/2018-1/8
23. Trunin, R.F. (1997). Comparison of the laboratory data on the compressibility of materials with the results obtained during underground nuclear explosions. High Temperature, 35(6), 888–895.
24. Trunin, R.F. (1994). Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions. Physics-Uspekhi, 37(11), 1123–1145. https://doi.org/10.1070/pu1994v037n11abeh000055
25. Kanel’, G.I., Fortov, V.E., & Razorenov, S.V. (2007). Shock waves in condensed-state physics. Physics-Uspekhi, 50(8), 771–791. https://doi.org/10.1070/pu2007v050n08abeh006327
26. Zeldovich, Ya.B., & Rayzer, Yu.P. (1963). Physics of shock waves and high-temperature hydrodynamic phenomena.
27. Baum, F.A., Orlenko, L.P., Stanyukovich, K.P., Chelyshev, V.P., & Shekhter, B.I. (1975). Physics of Explosion.
28. Al’tshuler, L. V., Il’kaev, R. I., & Fortov, V. E. (2021). Use of powerful shock and detonation waves to study extreme states of matter. Physics-Uspekhi, 64(11), 1167–1179. https://doi.org/10.3367/ufne.2021.09.039092
29. Belyaev N.M. (1962). Resistance of materials.
30. Hrebennikov, M.M., Miroshnikov V.Yu., & Pekelnyi M.I. (2022). Teorii mitsnosti. Skladnyi opir.
31. Babets, D., Sdvyzhkova, O., Hapieiev, S., Shashenko, O., & Vasyl, V. (2023). Multifactorial analysis of a gateroad stability at goaf interface during longwall coal mining – A case study. Mining of Mineral Deposits, 17(2), 9–19. https://doi.org/10.33271/mining17.02.009
32. Lapčević, V., Torbica, S., Stojanović, M., & Vojinović, I. (2023). Development and Validation of Universal 3D Blast Fragmentation Model. Applied Sciences, 13(14), 8316. https://doi.org/10.3390/app13148316
33. Moldabayev, S. K., Sdvyzhkova, O. O., Babets, D. V., Kovrov, O. S., & Adil, T. K. (2021). Numerical simulation of the open pit stability based on probabilistic approach. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 29–34. https://doi.org/10.33271/nvngu/2021-6/029
34. Aitkazinova, S., Sdvyzhkova, O., Imansakipova, N., Babets, D., & Klymenko, D. (2022). Mathematical modeling the quarry wall stability under conditions of heavily jointed rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 18–24. https://doi.org/10.33271/nvngu/2022-6/018
35. Kononenko, M., Khomenko, O., Kosenko, A., Myronova, I., Bash, V., & Pazynich, Y. (2024). Raises advance using emulsion explosives. E3S Web of Conferences, 526, 01010. https://doi.org/10.1051/e3sconf/202452601010