№82-22

Use of cartographic materials during environmental impact assessment 

I. Davydova1,            https://orcid.org/0000-0001-6535-3948

V. Melnyk-Shamrai1https://orcid.org/0000-0002-3551-5085

A. Panasiuk1,            https://orcid.org/0000-0001-7468-2022

A. Makhno1              https://orcid.org/0000-0002-7428-9578

1State University «Zhytomyr Polytechnic», Zhytomyr, Ukraine

Coll.res.pap.nat.min.univ. 2025, 82:258-273

Full text (PDF)

https://doi.org/10.33271/crpnmu/82.258

ABSTRACT

Purpose. To highlight the role and directions of using cartographic materials in the Environmental Impact Assessment (EIA) process, identify their advantages and limitations, and outline the prospects for developing this tool in environmental practice.

 

Methodology. Methods of systematization and generalization of scientific and practical sources on the application of cartographic materials in the field of EIA were employed. Particular attention was paid to analyzing regulatory and legal documents, examples of practical implementation of cartographic solutions, and the potential of geographic information systems. Illustrative materials are presented using the Environmental Impact Assessment Report of Granite Quarry LLC as a case study.

Results. The article examines the role and significance of cartographic materials in the EIA process, emphasizing their importance as a universal means of spatial analysis and visualization. Maps effectively represent complex environmental processes, identify potentially hazardous areas, model alternative development scenarios, and support informed decision-making. They ensure transparency and accessibility of information for experts, authorities, and the public, enabling the delineation of impact zones, modeling of cumulative effects, risk assessment, and planning of mitigation measures.

Scientific Novelty. The article systematizes contemporary approaches to using cartographic materials within the structure of EIA reports, emphasizing their role as illustrative and analytical instruments. It demonstrates that the development of geoinformation technologies opens new opportunities for integrated modeling and the incorporation of environmental, social, and technogenic factors into the assessment process.

Practical Significance. The proposed approaches to using cartographic materials can be applied in preparing EIA reports and environmental planning and monitoring. Their implementation contributes to strengthening the substantiation of managerial decisions, minimizing environmental risks, enhancing public communication transparency, and advancing sustainable development principles.

Keywords: environmental impact assessment, cartographic materials, geographic information systems, spatial analysis, monitoring, sustainable development, mining.

Refrences

1. Directive 2011/92/EU on the assessment of the effects of certain public and private projects on the environment (codified). https://eur-lex.europa.eu/eli/dir/2011/92/oj/engEUR-Lex

2. Directive 2014/52/EU amending Directive 2011/92/EU (EIA). https://eur-lex.europa.eu/eli/dir/2014/52/oj/engEUR-Lex

3. Zakon Ukrainy «Pro otsinku vplyvu na dovkillia»№2059-VIII (23.05.2017). https://zakon.rada.gov.ua/go/2059-19

4. UNEP. Environmental Impact Assessment Training Resource Manual (Sadler & McCabe, eds.). https://digitallibrary.un.org/record/574137/files/EIA_Training_Resource_Manual.pdf

5. IAIA. Best Practice Principles of EIA (International Best Practice Principles). https://iaia.org/wp-content/uploads/2025/02/BEST-PRACTICE-Principles-of-EIA.pdfiaia.org

6. Sparkes, A. (1996). A GIS for the Environmental Impact Assessment of a Wind Farm. ESRI Europe Proceedings. https://proceedings.esri.com/library/userconf/europroc96/PAPERS/PN26/PN26F.HTM

7. Atkinson, S.F. et al. (2011). Assessing the cumulative effects of projects using GIS techniques. Environmental Impact Assessment Review. https://www.sciencedirect.com/science/article/abs/pii/S0195925511000217

8. Erikstad, L. et al. (2021). Calculating cumulative effects in GIS using a stepless multivariate model. Journal of Outdoor Recreation and Tourism. https://www.sciencedirect.com/science/
article/pii/S2215016121002004

9. ESRI (2011). Geographic Information Systems and Environmental Health (white paper). https://www.esri.com/~/media/files/pdfs/library/whitepapers/pdfs/gis_and_env_health.pdf

10. ESRI (2000). GIS Technology for Disasters and Emergency Management. https://www.esri.com/~/media/files/pdfs/library/whitepapers/pdfs/disastermgmt.pdfesri.com

11. ESRI Proceedings (1997). Using GIS to Address NEPA’s EIS Requirements. https://proceedings.esri.com/library/userconf/proc97/proc97/to200/pap171/p171.htmproceedings.esri.com

12. Harker, K.J. et al. (2021). Integrating remote sensing into EIA. FACETS. https://www.facetsjournal.com/doi/10.1139/facets-2020-0049facetsjournal.com

13. Avtar, R. et al. (2020). Remote sensing for sustainable development (огляд з прикладами оцінювання впливів). Sustainability Science (PMC). https://pmc.ncbi.nlm.nih.gov/articles/PMC7470744/

14. Manapragada, N.V.S.K. et al. (2025). Remote sensing for environmentally responsive urban built environments. Sustainable Cities and Society. https://www.sciencedirect.com/science/article/pii/S2352938525000825

15. Patseva I.H., Melnyk-Shamrai V.V., & Luk’ianova V.V. (2022). Otsinka vplyvu na dovkillia: navchalnyi posibnyk. DU «Zhytomyrska politekhnika». https://eztuir.ztu.edu.ua/handle/123456789/8111

16. Zvit z otsinky vplyvu na dovkillia TOV «Hranitnyi kar’ier» (2021). 353 s.


date of first submission of the article to the publication – 7/04/2025
date of acceptance of the article for publication after review – 8/07/2025
date of publication – 9/10/2025