№82-23

Synthesis of potassium humate as an eco-friendly method for coal-preparation waste utilization 

R. Dychkovskyi1https://orcid.org/0000-0002-3143-8940

I. Miroshnykov1https://orcid.org/0009-0005-6451-3969

A. Pererva2           https://orcid.org/0009-0009-0542-595X

1Dnipro University of Technology,Dnipro, Ukraine

2PJSC "Lviv Coal Company", Silets, Ukraine

Coll.res.pap.nat.min.univ. 2025, 82:274-287

Full text (PDF)

https://doi.org/10.33271/crpnmu/82.274

ABSTRACT

Purpose. Development and justification of an integrated multiphysical methodology for evaluating the thermal conductivity and thermo-mechanical stability of porous thermal insulation materials, combining experimental measurements, numerical modeling, and analysis of structural and physical parameters to determine their suitability for use in energy-efficient designs of technical and civil structures.

Methods. Involves a comprehensive sequential preparation and segregation of the waste (determination of moisture content, ash content, and organic matter), conducting alkaline extraction using potassium hydroxide under controlled temperature and reaction time conditions, purification and concentration of the humate solution, as well as structural and functional analysis of the resulting product using FTIR spectroscopy, pH measurement, cation-exchange capacity determination, and elemental composition analysis. Additionally, mass balance evaluation and an assessment of the technological and environmental efficiency of the process were performed.

Results. The study demonstrated that coal beneficiation waste contains a significant proportion of humic substances suitable for alkaline extraction. Optimal process conditions were determined, ensuring a high yield of potassium humate with a stable structure and characteristic functional groups of humic polymers. The obtained product exhibits high solubility, enhanced cation-exchange capacity, and good stability. Moreover, the proposed process significantly reduces the mass of waste requiring disposal, providing an environmentally safe pathway for utilization.

Originality. Lies in establishing the relationships between root system mass development, aboveground biomass height, and a generalized integral coefficient reflecting the stimulating effect of potassium humate extracted from coal beneficiation waste on plant growth. The study developed an effective and environmentally safe method for synthesizing potassium humate from technogenic waste and determined optimal alkaline extraction conditions to achieve maximum humate yield while preserving the structural integrity of functional groups.

Practical implication. Сonsists in developing a new method for extracting humate from coal enrichment waste, proposed technology can be implemented at beneficiation plants, enabling the conversion of low-value technogenic waste into a commercially valuable product for agronomy, soil reclamation, and ecological technologies. Technological solutions reduce waste management costs, lower environmental risks, and support circular economic principles within the coal industry.

Keywords: potassium humate, coal beneficiation waste, alkaline extraction, humic substances, waste utilization, environmentally friendly synthesis, resource efficiency.

Refrerences

1. Lapshyn, Ye, Shevchenko, O., Dybrin, S., & and Dychkovskyi, R. (2025). Feasibility of Fine Classification in Processing Watered Coal Sludge from Storage: A Case Study of the Dnipro Coke Chemical Plant. Acta Montanistica Slovaca, 100. https://doi.org/10.46544/ams.v30i1.07

2. Wilde, S. A. (1937). The Use of Liquid Humate Fertilizers in Forest Nurseries. Journal of Forestry, 35(4), 388–392. https://doi.org/10.1093/jof/35.4.388

3. Ratushniak, H., Biks, Yu., & Lialiuk, A. (2022). Eksperymentalni doslidzhennia teploprovidnosti teploizoliatsiinykh materialiv iz mineralnoi vaty. Suchasni tekhnolohii, materialy i konstruktsii v budivnytstvi, 19(1), 12–42.

4. Singh, T., & Singhal, R. (2012). Poly(acrylic acid/acrylamide/sodium humate) superabsorbent hydrogels for metal ion/dye adsorption: Effect of sodium humate concentration. Journal of Applied Polymer Science, 125(2), 1267–1283. Portico. https://doi.org/10.1002/app.35435

5. Ataollahi, F., Piltz, J. W., Casburn, G. R., & Holman, B. W. B. (2024). The quality and nutritional value of beef from Angus steers fed different levels of humate (K Humate S100R). Veterinary and Animal Science, 24, 100355. https://doi.org/10.1016/j.vas.2024.100355

6. Polyanska, A., Savchuk, S., Dudek, M., Sala, D., Pazynich, Y., & Cicho, D. (2022). Impact of digital maturity on sustainable development effects in energy sector in the condition of Industry 4.0. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 97–103. https://doi.org/10.33271/nvngu/2022-6/097

7. Beshley, S., Baranov, V., & Shpak, Y. (2021). Vplyv kamianovuhilnoho popelu ta humatu kaliiu na vmist nitrohenu i karbonu v substrati vidvalu vuhlepromyslovosti y orhanakh Sorghum drummondii (Nees ex Steud.) Millsp. & Chase. Visnyk Lvivskoho universytetu. Seriia biolohichna, (85), 45–52. Kochmar, I., & Karabyn, V. (2022).

8. Investigation of deportment of chalcophilic heavy metals in the waste rock of Central Coal Enrichment Plant “Chervonohradska” for the purposes of environmental safety of Lviv-Volyn coal basin. Environmental Problems, 7(4), 169–176. https://doi.org/10.23939/ep2022.04.169

9. Miroshnykov, I., Cichoń, D., Shyrin, L., Dybrin, S., & Dychkovskyi, R. (2025). Ensuring the environmental sustainability of molybdenum ore mining. IOP Conference Series: Earth and Environmental Science, 1457(1), 012014. https://doi.org/10.1088/1755-1315/1457/1/012014

10. Knysh, I., & Karabyn, V. (2014). Heavy metals distribution in the waste pile rocks of Chervonogradska mine of the Lviv-Volyn coal basin (Ukraine). Pollution Research, 33, 663–670.

11. Voloshchyshyn, A.I., Bosak, P.V., Popovych, V.V., Menshykova, O.V., & Kopystynskyi, Y.O.(2024).Natural phytomelioration of coal mine waste heaps in the context of increased radiation background (on the case of Nadiya mine, Lviv-Volyn coal basin, Ukraine). IOP Conference Series: Earth and Environmental Science, 1415(1), 012130. https://doi.org/10.1088/1755-1315/1415/1/012130

12. Fischer, C. (2002).Oberflächenquantifizierung an Schwarzpeliten unterschiedlicher Verwitterungsgrade (Doctoral dissertation). Friedrich-Schiller-Universität Jena.

13. Grinberg, I. V. (1957).Issledovanie khimicheskoi prirody i geneticheskie sootnosheniia organicheskogo veshchestva Karpatskikh slantsev i neftei [Study of the chemical nature and genetic relations of organic matter of Carpathian shales and oils]. Academy of Sciences of the Ukrainian SSR.

14. Dychkovskyi, R., Falshtynskyi, V., Saik, P., Lozynskyi, V., Sala, D., Hankus, Ł., Magdziarczyk, M., & Smoliński, A. (2025). Control of contour evolution, burn rate variation, and reaction channel formation in coal gasification. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-93611-3

15. Vladyko, O., Maltsev, D., Gliwiński, Ł., Dychkovskyi, R., Stecuła, K., & Dyczko, A. (2025). Enhancing Mining Enterprise Energy Resource Extraction Efficiency Through Technology Synthesis and Performance Indicator Development. Energies, 18(7), 1641. https://doi.org/10.3390/en18071641

16 Kosenko, A., Khomenko, O., Kononenko, M., Polyanska, A., Buketov, V., Dychkovskyi, R., Polański, J., Howaniec, N., & Smolinski, A. (2025). Sustainable management of iron ore extraction processes using methods of borehole hydro technology. International Journal of Mining and Mineral Engineering, 16(1), 92–112. https://doi.org/10.1504/ijmme.2025.145592

17 Leita, L., Petruzzelli, G., & Fornasier, F. (2003). Ferricyanide-humate formation. Journal de Physique IV (Proceedings), 107, 769–772. https://doi.org/10.1051/jp4:20030414

18. Marini, F., & Walczak, B. (2020). ANOVA-Target Projection (ANOVA-TP). Comprehensive Chemometrics, 495–520. https://doi.org/10.1016/b978-0-12-409547-2.14578-0

19. Leita, L., De Nobili, M., Catalano, L., & Mori, A. (1998). Formation and voltammetric characterization of iron–humate complexes of different molecular weights. Humic Substances, 165–171. https://doi.org/10.1016/b978-1-85573-806-5.50017-4

20. Pavlychenko, A., Sala, D., Pyzalski, M., Dybrin, S., Antoniuk, O., & Dychkovskyi, R. (2025). Utilizing Fuel and Energy Sector Waste as Thermal Insulation Materials for Technical Buildings. Energies, 18(9), 2339. https://doi.org/10.3390/en18092339

21. Newcomer, R. W., Nybo, J. P., & Newcomer, J. R. (2021). Humate in the Upper Cretaceous Fruitland Formation in northwestern New Mexico. Geology of the Mount Taylor Area, 153–158. https://doi.org/10.56577/ffc-71.153

22. Zaryab, A., Nassery, H. R., Alijani, F., & Knoeller, K. (2023). Identification of hydro-chemical processes in Western Kabul Plain aquifer (Afghanistan) using statistical methods and self-organizing map. Sustainable Water Resources Management, 9(6). https://doi.org/10.1007/s40899-023-00980-6

23. Giesy, J. P., Geiger, R. A., Kevern, N. R., & Alberts, J. J. (1986). UO22+-humate interactions in soft, acid, humate-rich waters. Journal of Environmental Radioactivity, 4(1), 39–64. https://doi.org/10.1016/0265-931x(86)90020-2


date of first submission of the article to the publication – 7/01/2025
date of acceptance of the article for publication after review – 8/02/2025
date of publication – 9/03/2025