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Мета. Розробити і перевірити (валідувати) гібридну монотонну модель кривої розділення 

гідроциклона, яка поєднує фізично обґрунтовану логістичну основу, обумовлену даними ко-

рекцію залишків та суворе забезпечення монотонності - для інтерпретованого прогнозування 

тонкості поділу 𝑑50 і вибору уставок під задане значення 𝑑50
𝑑

.  

Методика. Залежність «редукована частка у пісках - розмір частинок» описується логіс-

тичною функцією з параметрами, що інтерпретуються як 𝑑50 (тонкість поділу) та крутизна 

кривої. Відхилення (залишки) між логістичною кривою і експериментальними даними моде-

люються ансамблевим методом градієнтного бустингу, після чого результуюча крива калібру-

ється ізотонічною регресією PAV для гарантування монотонного зростання та фізичних меж 

[0;1]. Модель навчено і протестовано на відкритих експериментальних даних серії випробу-

вань гідроциклона (з різними діаметрами патрубків та тиском живлення). Валідація здійсню-

валася як 5-кратна групова перехресна валідація (GroupKFold) за конфігураціями обладнання; 

для оцінки надійності моделі обчислено 95%-ві довірчі інтервали методом бутстрапу (вибірки 

з поверненням), а також побудовано карти імовірності потрапляння 𝑑50 у заданий допуск. 

Результати. Запропонована гібридна монотонна модель досягає середнього RMSE ~0.14 

(проти ~0.23 у чисто логістичної моделі), тобто суттєво підвищує точність прогнозу. Модель 

коректно відтворює вплив технологічних факторів: зі збільшенням тиску живлення та звужен-

ням діаметрів патрубків тонкість поділу 𝑑50 зменшується (розділення відбувається тонше). 

Модель також надає оцінки 𝑑50 навіть у випадках неповного розділення і пропонує стійкі ре-

комендовані уставки для досягнення цільового 𝑑50.  

Наукова новизна. Запропоновано гібридну логістично-ізотонічну модель із навчанням за-

лишків, яка гарантує фізично коректну монотонну Тромп-криву в межах [0;1] і знижує похи-

бку прогнозу. Кількісно встановлено залежність 𝑑50 від уставок (тиску, діаметрів піскової на-

садки та зливного патрубка) й уведено карти ймовірності 𝑑 (|𝑑50 − 𝑑50
𝑑 |≤ Δ ) як практичний 

критерій вибору режимів. | 
Практична значимість. Розроблена модель є інструментом для інженера-гідромеханіка: 

вона дає можливість швидко оцінити показник 𝑑50 разом із довірчим інтервалом, підібрати 

оптимальні уставки гідроциклона під бажане значення 𝑑50 з відомою ймовірністю досягнення 

результату, а також побудувати карти стійкої роботи системи - без затратних CFD-моделю-

вань. 

Ключові слова: гідроциклон, крива розділення, тонкість поділу 𝑑50, ізотонічна регресія, 

монотонна калібровка, машинне навчання, уставки. 
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Вступ і огляд літератури. Гідроциклони широко застосовуються для роз-
ділення дрібнодисперсних суспензій у гірничо-збагачувальній галузі, хімічній 
технології та очищенні води. Важливою характеристикою процесу класифікації 
є тонкість поділу (показник d50) – розмір частинок, при якому половина потрап-
ляє до пісків, а половина – у злив. Редукована частка у пісках (частка матеріалу 
даного класу, що виходить у піски через піскову насадку) є безрозмірною (від 0 
до 1) і зростає зі збільшенням розміру частинок і за ідеальних умов має S-подібну 
форму, відому як крива розділення (Тромп-крива), детально описану в працях 
Bradley [1] та Svarovsky [2]. На практиці крива розділення може мати аномалії на 
тонкому боці через перепад тиску та тонкі частиці, що проходять у піски разом 
із рідиною [3]. Геометричні параметри гідроциклона, передусім діаметри піскової 
насадки та зливного патрубка, а також робочий тиск живлення суттєво впливають 
на d50 та форму кривої розділення [4]. Зменшення діаметра піскової насадки або 
збільшення тиску, як правило, приводить до тоншого поділу (меншого d50), проте 
надмірне звуження піскової насадки чи підвищення тиску може знизити загальну 
ефективність за рахунок втрат рідини і дрібних частинок у злив [1, 4]. 

Традиційно для прогнозування роботи гідроциклонів використовуються ем-
піричні моделі та напівемпіричні залежності, що виражають d50 та інші показники 
через геометрію і режимні параметри [1, 4]. Такі моделі швидкі в розрахунках, 
проте вони обмежені припущеннями лінійності і часто не враховують індивідуа-
льні особливості кривих розділення. Комп’ютерне моделювання методом CFD до-
зволяє детально врахувати гідродинаміку і багатофазні ефекти у гідроциклоні, але 
потребує значних обчислювальних ресурсів і складної калібровки [5]. Наприклад, 
у дослідженні Pathirikattu та співавт. [6] методи машинного навчання успішно за-
стосовано для прогнозування показників роботи гідроциклонів. Такі моделі (на-
приклад, нейронні мережі або ансамблеві методи) здатні виявляти приховані не-
лінійні залежності і досягати високої точності [6]. Проте «чорні ящики» моделей 
машинного навчання (ML) викликають занепокоєння щодо фізичної інтерпретації 
та узгодженості з законами процесу. Зокрема, стандартні ML-підходи не гаранту-
ють монотонності кривої розділення – модель може прогнозувати неможливе зни-
ження ефективності з ростом розміру частинок, якщо явно не врахувати цю ви-
могу [7]. Наявність немонотонних або нефізичних ділянок у кривих знижує довіру 
інженерів до моделей і ускладнює подальше керування процесом. 

Таким чином, існує потреба у підходах моделювання, які поєднують гнуч-
кість ML з фізичною інтерпретованістю та апріорними обмеженнями монотон-
ності [8]. Ідея так званого physics-informed ML або наукового машинного нав-
чання полягає в тому, щоб «вбудувати» фізичні закономірності чи структуру мо-
делі в процес навчання, тим самим підвищивши достовірність та екстраполяційні 
можливості моделі [9]. У даній роботі реалізовано гібридний підхід: базовою ос-
новою моделі є фізично обґрунтована логістична функція, параметри якої (d50 та 
крутизна k) оцінено з експериментальних даних для кожної конфігурації гідро-
циклона. На цю основу нашаровується ML-модель для корекції залишків, а оста-
точний результат коригується ізотонічною регресією, щоб строго забезпечити 
монотонне зростання ефективності із збільшенням розміру частинок. Подібна пі-
сляобробка широко використовується для калібрування моделей [7, 10] і гаран-
тує виконання вимоги монотонності. 
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Для побудови і перевірки моделі використано відкриті експериментальні 

дані [11], що охоплюють серію випробувань гідроциклона AKW RWK-42L з різ-

ними діаметрами патрубків та тиском. Уся реалізація моделі та обчислювальні 

експерименти виконані у відкритому програмному середовищі, вихідний код та 

дані доступні у репозиторії GitHub [12]. 

Мета статті. Метою роботи є розроблення та валідація гібридної монотон-

ної моделі ефективності гідроциклона, яка забезпечує фізично узгоджену форму 

кривої розділення, стабільні оцінки тонкості поділу 𝑑50 та дозволяє підбирати 

технологічні уставки гідроциклона під задану цільову тонкість 𝑑50
𝑑

 з оцінкою імо-

вірності дотримання допуску. 

Матеріали та методи. Для аналізу використано відкритий набір даних 

Mendeley Data [11], що містить результати серії експериментів з гідроциклоном 

моделі AKW RWK-42L. Установку випробували на суспензії бентонітової глини; 

змінювались діаметр піскової насадки (apex), діаметр зливного патрубка (vortex 

finder) та тиск живлення. Для кожної конфігурації патрубків і тиску було отримано 

гранулометричний склад живлення та виміряно ефективність класифікації (частка 

частинок кожного класу, що потрапила до пісків). Усі розрахунки і моделювання 

виконано в Python із використанням бібліотек scikit-learn, numpy, pandas тощо. 

Для досягнення мети побудовано параметричну базову модель кривої роз-

ділення у вигляді логістичної функції 𝑑( 𝑑 (𝑑 𝑑 − 𝑑50))  з параметрами d50 та кру-

тизною 𝑑, одержаними з експериментальних даних для кожної конфігурації гід-

роциклона; далі навчено модель машинного навчання корекції залишків із роз-

ширеними ознаками (розмір частинок 𝑑 𝑑, геометричні параметри, тиск тощо) та 

застосовано постобробку ізотонічною регресією, щоб гарантувати строго моно-

тонний вихід у (Dp). Узагальнювальну здатність оцінено груповою перехресною 

валідацією (GroupKFold) за конфігураціями («піскова насадка, зливний патру-

бок, тиск»), а також виконано абляційний аналіз варіантів (без залишку моделі, 

без монотонізації). Для кожної конфігурації визначено d50 із бутстрап-довірчими 

інтервалами та відміткою цензурування у разі недосягнення рівня 0.5. Нарешті, 

розв’язано задачу підбору уставок гідроциклона під задане 𝑑50
𝑑

 і побудовано ка-

рти ймовірності виконання допуску |𝑑50 − 𝑑50
𝑑 |≤ Δ . 

Модель гібридної монотонної класифікації. Базова крива розділення мо-

делюється параметричною логістичною функцією, яка набуває значень від 0 до 

1 і має вигляд: 

 𝑑b̂ase( 𝑑 𝑑) = 𝑑( 𝑑 ( 𝑑 𝑑 − 𝑑50) )  =   1

 1+ 𝑑𝑑𝑑[−  𝑑 (  𝑑 𝑑− 𝑑50 ) ]
, (1) 

де 𝑑(𝑑) = 
1

 1+ 𝑑𝑑𝑑− 𝑑 – логістична функція, 𝑑 𝑑 – характерний розмір частинок (мкм) у 

класі; 𝑑50 (мкм) – параметр тонкості поділу (розмір частинки, при якому 𝑑b̂ase = 0.5), 

𝑑 – параметр крутизни кривої (чим більше 𝑑, тим крутіше відбувається перехід від 

0 до 1). Відповідно до фізичного змісту, 𝑑50 визначає горизонтальне положення S-

подібної кривої, а 𝑑 пов’язаний з гідродинамічною «розмитістю» розділення: ме-

нші значення 𝑑 відповідають більш пологій (нечіткій) кривій, більші 𝑑 – більш 
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різкій сепарації. Рисунок 1 демонструє залежність форми кривої розділення від 

параметра крутизни 𝑑 за незмінної тонкості поділу 𝑑50. Добре видно, що зі зрос-

танням 𝑑 перехід від області дрібних частинок, які переважно потрапляють у злив, 

до області крупних частинок, що майже повністю виходять у піски, відбувається 

різкіше і локалізується в більш вузькому діапазоні розмірів. Такий характер кривої 

відповідає підвищеній чіткості процесу класифікації. Натомість при менших зна-

ченнях 𝑑 крива є більш пологою, що свідчить про «розмитий» характер поділу, 

коли значна частка проміжних за розміром частинок розподіляється випадковим 

чином між продуктами. Це відображає фізичну інтерпретацію параметра крути-

зни: він характеризує ступінь визначеності процесу відсікання частинок і пов’яза-

ний з гідродинамічними умовами у робочому просторі гідроциклона. 

 

 

Рис. 1. Вплив параметра 𝑑 на криву розділення за сталого 𝑑50: зі зростанням 𝑑 

перехід стає крутішим (звужується зона переходу). 

 

Для кожної конфігурації гідроциклона початкові оцінки 𝑑50 та 𝑑 отримано 

із експериментальних даних шляхом аналізу емпіричної кривої розділення. Зок-

рема, використано ізотонічну регресію для монотонного згладжування залежно-

сті 𝑑(𝑑 𝑑) в межах однієї конфігурації. За згладженою кривою визначено точку, 

де ефективність становить 50% (якщо така точка лежить в діапазоні наявних да-

них) - це оцінка 𝑑50. У випадках, коли крива не досягає рівня 0.5 (наприклад, 

якщо весь діапазон розмірів дає ефективність нижче 50%), значення 𝑑50 умовно 

вважається більшим за максимальний наявний розмір (позначається як цензуро-

ване справа), і навпаки, якщо ефективність перевищує 50% уже на найдрібніших 
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частках – 𝑑50 менше мінімального розміру (ліве цензурування). Крутизну 𝑑 оці-

нено за допомогою локальної лінійної апроксимації логіт-функції поблизу точки 

𝑑 = 0.5. Отримані параметри (𝑑50, 𝑑) далі використано для початкової парамет-

ризації моделі. Відзначимо, що ці оцінки доволі грубі і слугують лише стартовим 

наближенням, яке потім може бути скориговане ML-моделлю. 
Наступний шар моделі - корекція залишків. Нехай 𝑑exp(𝑑 𝑑) – експеримента-

льно спостережена редукована частка у пісках для певної конфігурації і розміру 
частинок. Тоді залишок визначимо як 

 𝑑( 𝑑 𝑑) = 𝑑exp( 𝑑 𝑑)  −  𝑑b̂ase( 𝑑 𝑑) , (2) 

де 𝑑exp( 𝑑 𝑑)  – експериментально спостережена редукована частка у пісках, 

𝑑b̂ase( 𝑑 𝑑)  – базова логістична оцінка. 

На всіх доступних точках (для всіх конфігурацій і розмірів) сформовано вибі-
рку залишків. В якості ознак використано поточний розмір 𝑑 𝑑 (а також його квад-

ратичне та кубічне перетворення 𝑑 𝑑
2, 𝑑 𝑑

3 для гнучкості), 𝑑apex (діаметр піскової на-

садки, мм), 𝑑vortex (діаметр зливного патрубка, мм), 𝑑  (тиск, бар), кілька інтеракти-

вних ознак, що утворені як комбінації параметрів (наприклад, відношення 𝑑 𝑑/𝑑apex, 

𝑑 𝑑/𝑑vortex, а також добутки параметрів тощо), 𝑑b̂ase – значення базової логістичної 

функції (це вводить нелінійність, пов’язану з початковою формою кривої). 
Таким чином, ознаковий простір включає як експериментальні фактори, так 

і допоміжні змінні, що можуть покращити апроксимацію. Для моделювання за-
лишкової залежності 𝑑(𝑑 𝑑) було протестовано кілька алгоритмів: градієнтний бу-

стинг регресії (GBR, Gradient Boosting Regressor), екстремально випадкові дерева 
(ExtraTrees) та гістограмний бустинг (HistGradientBoosting) із бібліотеки Scikit-
Learn. Ці методи здатні моделювати довільні нелінійні взаємозв’язки. Навчання 
проводилось на 80% даних (у розрізі підвибірок), оптимізація гіперпараметрів 
здійснювалась на основі внутрішньої перехресної-валідації (використовувались 
стандартні параметри, близькі до оптимальних: наприклад, для градієнтного бу-
стингу - 100 дерев глибиною до 5, швидкість навчання (learning rate) 0.1; для екс-
тремально випадкових дерев - 200 дерев без обрізки гілок; для гістограмного бу-
стингу - 100 ітерацій, максимальна глибина 6). 

Складена гібридна модель дає початковий прогноз ефективності: 

 𝑑r̂aw(𝑑 𝑑) = clip[0,1]( 𝑑b̂ase(𝑑 𝑑) + 𝑑̂(𝑑 𝑑))  , (3) 

де 𝑑̂(𝑑 𝑑) – вихід моделі залишку, а clip[0,1] обмежує значення інтервалом [0,1] 

(щоб виключити незначні негативні або понад 100% значення на краях). Промі-

жний прогноз 𝑑r̂aw( 𝑑 𝑑)  у загальному випадку не гарантує монотонності за 𝑑 𝑑, 

тому фінальним кроком застосовано постобробку ізотонічною регресією окремо 

для кожної конфігурації гідроциклона. Для конфігурації (фіксовані 

𝑑apex, 𝑑vortex, 𝑑 ) беремо дискретну залежність 𝑑r̂aw(𝑑 𝑑) у всіх точках 𝑑 𝑑 (що від-

повідали експериментальним замірам) і обчислюємо монотонно неубуваючу фу-

нкцію 𝑑(̂𝑑 𝑑), що мінімізує відхилення від 𝑑r̂aw(𝑑 𝑑) у сенсі квадратичної помилки, 

з умовою 𝑑(̂𝑑 𝑑,𝑑) ≤ 𝑑(̂𝑑 𝑑,𝑑) при 𝑑 𝑑,𝑑 < 𝑑 𝑑,𝑑 для всіх 𝑑, 𝑑. Ця задача розв’язується 
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алгоритмом pool-adjacent-violators (PAV) [7]. В результаті отримаємо скориго-

вану 𝑑(̂𝑑 𝑑), яка є строго монотонною по 𝑑 𝑑 і максимально наближена до вихід-

ного прогнозу. З практичних міркувань монотонізація також проводилась на екс-

трапольованих краях: якщо для найменшого 𝑑 𝑑,min прогноз 𝑑r̂aw був не нуль, його 

зменшували до 0; якщо для найбільшого 𝑑 𝑑,max прогноз не досяг 1, його збіль-

шували до 1 (це відповідає фізичним межам при 𝑑 𝑑 → 0 і 𝑑 𝑑 → ∞). Таким чи-

ном, остаточна модель 𝑑(̂𝑑 𝑑) повністю задовольняє фізичній інтуїції (зростає від 

0 до 1) і водночас точно проходить через експериментальні тенденції. 

Для підвищення ефективності навчання деякі навчальні приклади було зва-

жено. Вага кожної точки кривої для конфігурації пропорційна частці частинок 

цього діапазону в живленні. Для кожного інтервалу розмірів 𝑑 𝑑,𝑑 задано індиві-

дуальну об’ємну частку у живленні. Таким чином, модель приділяє більшу увагу 

тим ділянкам кривої, які відповідають значущим фракціям (наприклад, якщо у 

живленні мало дуже великих часток, то похибка в тій області менш критична). 

Схема валідації і критерії. Для об’єктивної оцінки узагальнювальної здат-

ності моделі використано перехресну-валідацію по конфігураціях. Весь набір 

експериментальних точок розбивався на 5 частин таким чином, що всі дані однієї 

конфігурації (𝑑apex, 𝑑vortex, 𝑑 ) цілком належали одній підвибірці.  

Основною метрикою точності обрано корінь середньоквадратичної поми-

лки (RMSE) між прогнозованими і експериментальними значеннями редукованої 

ефективності (в межах тестової підвибірки). Вимірювання ефективності мають 

шум, тому 𝑑 2 ідеально не досягає 1 навіть для бездоганної моделі; RMSE зруч-

ний тим, що виражається у тих же одиницях, що й цільова змінна (частка 0–1). 

Для кожного варіанту моделі визначався середній RMSE і медіанний RMSE по 5 

підвибірках. 95% довірчий інтервал (ДІ) для середнього RMSE оцінено бутстрап-

методом: генерацією 1000 випадкових вибірок з витягуванням з 5 значень RMSE-

підвибірок і обчисленням квантилів 2.5% та 97.5%. 

Крім агрегованої метрики, проаналізовано також показники для окремих 

конфігурацій. Зокрема, для кожної конфігурації розраховано її «спостережене» 

𝑑50 та «прогнозоване» 𝑑50. Спостережене 𝑑50 визначено на емпіричній кривій (пі-

сля ізотонічного згладжування експериментальних даних для даної конфігура-

ції). Якщо емпірична крива не досягала 50% ефективності навіть на найбільшому 

наявному розмірі, таку оцінку 𝑑50 позначали як > 𝑑 max; якщо ж ефективність 

була понад 50% вже на мінімальних розмірах - як < 𝑑 min. Прогнозоване 𝑑50 зна-

ходили вже за змодельованою кривою 𝑑(̂𝑑 𝑑) (після монотонізації). Це робилося 

шляхом інтерполяції: брали висоту 0.5 на осі 𝑑 ̂ і знаходили відповідний 𝑑 𝑑 на 

графіку (якщо 𝑑 ̂досягала 0.5 у рамках [𝑑 𝑑,min, 𝑑 𝑑,max]). У разі, якщо модельна 

крива ще не досягла 0.5 на 𝑑 𝑑,max, прогнозоване 𝑑50 трактували як більше за 

𝑑 𝑑,max (і аналогічно для малого). Для оцінки довірчого інтервалу прогнозованого 

𝑑50 використано бутстрап: моделювання 800 повторних вибірок з даних конфігу-

рації (з перестановкою залишків моделі) та обчислення 𝑑50 для кожної; за 
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вибіркою отримано 95% ДІ. Усі результати по 𝑑50 зведено в таблицю, де додано 

позначку цензурування (𝑑𝑑𝑑𝑑𝑑𝑑 - none, <  або > ). 

Останній блок аналізу стосується оптимізації параметрів гідроциклона під 

задану ціль. Використовуючи навчену модель 𝑑(̂𝑑 𝑑, 𝑑apex, 𝑑vortex, 𝑑 ), можна пе-

редбачити значення 𝑑50 для будь-якої комбінації патрубків і тиску (в межах дос-

лідженого діапазону). Задамо кілька цільових значень 𝑑50
𝑑

 (у роботі розглянуто 

10, 12 та 15 мкм – як приклади різної тонкості класифікації). Для кожного 𝑑50
𝑑

 

здійснено перебір усіх доступних варіантів 𝑑apex, 𝑑vortex, 𝑑  з експериментального 

набору і обрано 20 найкращих конфігурацій з найменшим модулем відхилення 

|𝑑5̂0 − 𝑑50
𝑑 |. Таким чином формується рекомендований список уставок (зазнача-

ючи їх передбачений 𝑑50 і похибку від цілі). Оскільки модель надає не лише то-

чковий прогноз, а й оцінку невизначеності (бутстрап-розкид 𝑑50), далі оцінено 

стійкість кожної уставки: ймовірність того, що фактичне 𝑑50 для цієї уставки по-

трапить у заданий допуск до 𝑑50
𝑑

. Формально, імовірність 𝑑 (|𝑑50 − 𝑑50
𝑑 |≤ Δ ) об-

числено як частку бутстрап-реалізацій 𝑑50, для яких виконувалась нерівність (у 

роботі використано Δ = 2.0 мкм). Для наочності, результати подано у вигляді те-

плових карт: по осях відкладаються два параметри (наприклад, діаметр піскової 

насадки і тиск), а кольором позначено ймовірність досягти 𝑑50 у допуску при фі-

ксованому третьому параметрі (діаметрі зливного патрубка). Такі діаграми до-

зволяють ідентифікувати області в просторі уставок, де досягнення цілі найбільш 

вірогідне з урахуванням невизначеності моделі. 

Результати. У таблиці наведено порівняння результатів крос-валідації 

(GroupKFold, 5 підвибірок) для різних варіантів моделі. Гібридна модель з ізото-

нічною постобробкою продемонструвала найкращі показники: середній RMSE 

0.137 для Hybrid (ExtraTrees, isotonic), медіанний RMSE 0.045, що істотно краще 

за логістичну базову модель (RMSE 0.226). Градієнтний бустинг (GBR) і гістог-

рамний бустинг (HistGB) показали близький рівень помилки, тоді як алгоритм 

екстремально випадкових дерев зменшив RMSE, ймовірно завдяки усередненню 

більшої кількості дерев. 

 

Таблиця 

Результати моделювання 

Варіант моделі RMSE (середній) RMSE (медіана) 

Hybrid (ExtraTrees, isotonic) 0.137 0.045 

Hybrid (HistGB, isotonic) 0.145 0.073 

Hybrid (GBR, isotonic) 0.146 0.058 

Logistic-only 0.226 0.161 

 

Вплив тиску живлення на форму кривої розділення за незмінної геометрії 

гідроциклона представлено на рис. 2. На графіку показано залежність редукова-

ної частки у пісках від розміру частинок 𝑑 𝑑 для кількох рівнів тиску – від 3 до 

30 бар. Спостерігається закономірність, що зі зростанням тиску крива поступово 
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зміщується вліво і стає крутішою, що відповідає зменшенню значення 𝑑50 та то-

ншому поділу. При низьких тисках (3–4 бар) розділення є відносно грубим, і 

лише частинки більшого діаметра потрапляють у піски з високою ймовірністю. 

Натомість при підвищенні тиску до 20–30 бар розділення відбувається значно 

чіткіше, і навіть дрібні фракції ефективно вилучаються у піски. Водночас надмі-

рне підвищення тиску може призвести до небажаних ефектів, таких як збіль-

шення гідравлічних втрат чи винесення дрібних частинок у злив, що необхідно 

враховувати при оптимізації режимів роботи. Таким чином, наведені криві підт-

верджують ключову роль тиску як керованого технологічного параметра, що ви-

значає ефективність класифікації. 

 

 

Рис. 2. Крива розділення: вплив тиску (піскова насадка та зливний  

патрубок - фіксовані). По осі Y – редукована частка у пісках 

 

Рис. 3 відображає ізолінії розрахункових значень тонкості поділу 𝑑50 на пло-

щині «діаметр піскової насадки × діаметр зливного патрубка» за сталого тиску 

живлення. Світліші області на карті відповідають більшим значенням 𝑑50, тобто 

грубішому розділенню, тоді як темніші зони вказують на дрібніший поділ, коли 

крива розділення зміщується вліво. Ізолінії демонструють чіткий комбінований 

вплив обох геометричних параметрів: зменшення діаметра піскової насадки 

сприяє інтенсифікації процесу класифікації та зниженню 𝑑50, водночас звуження 

зливного патрубка також сприяє досягненню тоншого поділу за рахунок підви-

щення циркуляції та зміни гідродинаміки потоку. Разом ці тенденції відобража-

ють фізичну взаємодію конструктивних параметрів гідроциклона і 
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підтверджують, що оптимізація роботи апарата повинна враховувати не лише ок-

ремі значення патрубків, а й їхні пропорції та взаємозв’язки, що визначають ре-

жимні характеристики розділення. 

 

 

Рис. 3. Ізолінії 𝑑50 на площині «піскова насадка × зливний патрубок»  

(тиск фіксований); темніші зони відповідають меншим 𝑑50. 

 

На рис. 4 представлено тривимірну поверхню прогнозованої редукованої 

частки у пісках 𝑑(̂𝑑 𝑑, 𝑑apex) за сталих значень діаметра зливного патрубка та ти-

ску живлення. На графіку чітко простежується закономірність: зі зростанням 

розміру частинок 𝑑 𝑑 ефективність вилучення у піски закономірно підвищу-

ється, наближаючись до одиниці для найбільших фракцій. Одночасно вплив ді-

аметра піскової насадки проявляється у вертикальному зміщенні поверхні – 

зменшення її діаметра сприяє підвищенню редукованої частки у пісках, що ві-

дображає інтенсифікацію процесу класифікації. Наведене просторове предста-

влення дозволяє візуалізувати нелінійну взаємодію між геометричними параме-

трами та розміром частинок, демонструючи плавний перехід від зони майже 

повного винесення дрібних фракцій у злив до області їхнього практично пов-

ного вилучення у піски. Така форма поверхні підтверджує адекватність гібрид-

ної моделі та її здатність забезпечувати фізично узгоджене прогнозування в 

умовах змінних уставок. 
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Рис. 4. Поверхня редукованої частки у пісках 𝑑(̂𝑑 𝑑, 𝑑apex)  

(зливний патрубок і тиск – фіксовані) 
 

 

Рис. 5. Теплова карта імовірності 𝑑 (|𝑑50 − 𝑑50
𝑑 |≤ Δ ) на площині  

«піскова насадка × тиск» за фіксованого зливного патрубка  

для 𝑑50
𝑑 = 12 мкм, Δ = 2.0 мкм 
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Результати оптимізації уставок гідроциклона відносно цільового значення 

тонкості поділу 𝑑50
𝑑 = 12 𝑑м із допуском Δ = ± 2.0 𝑑м представлено на рис. 5. На 

площині «діаметр піскової насадки × тиск живлення» при сталому діаметрі зли-

вного патрубка показано теплову карту імовірності 𝑑 (|𝑑50 − 𝑑50
𝑑 |≤ Δ ), яка оці-

нювалася методом бутстрап-моделювання. Найвищі значення ймовірності (сві-

тлі ділянки) спостерігаються при середніх та підвищених тисках (близько 20–

25 бар) у поєднанні з діаметрами піскової насадки порядку 4.5–5.5 мм, що свід-

чить про оптимальний баланс між гідродинамічними умовами та конструктив-

ними параметрами. Натомість при низьких тисках або малих діаметрах насадки 

ймовірність потрапляння у заданий допуск є істотно нижчою, що підтверджує 

чутливість процесу до режимних факторів.  

Інтерпретація результатів. Запропонована гібридна модель поєднала в 

собі кращі риси емпіричних підходів та гнучкість ML. Логістична функція як ба-

зис задала фізично обґрунтовану форму кривої розділення, наближену до класи-

чної S-подібної Тромп-кривої [1]. Це забезпечило інтерпретованість параметрів: 

кожній конфігурації гідроциклона зіставлено показник 𝑑50 (тонкість поділу) та 

параметр крутизни 𝑑, які можна порівнювати між собою і з літературними да-

ними. ML-модель на основі ансамблевих методів «доопрацювала» локальні осо-

бливості кривих, зумовлені впливом конкретних факторів, які не охоплюються 

простою логістичною формулою.  

Висновки. У роботі представлено новий підхід до моделювання процесу гі-

дроциклонної класифікації, який поєднує машинне навчання і фізичну інтерпре-

тованість. Новизна запропонованого підходу полягає в тому, що вперше для мо-

делювання гідроциклонів об’єднано машинне навчання з апріорними фізичними 

обмеженнями монотонності кривої розділення. Запропонована гібридна модель 

продемонструвала високу валідність: на експериментальних даних вона суттєво 

перевершує традиційну логістичну модель за точністю (RMSE знижено прибли-

зно на 40 % (0.226 → 0.137)). Модель є придатною для практичного застосування 

– її можна інтегрувати в системи керування гідроциклоном для прогнозування 

𝑑50 та вибору оптимальних режимів роботи без необхідності трудомістких екс-

периментів. Отримані результати відкривають можливості для подальших дослі-

джень: зокрема, планується поширити запропонований підхід на інші типи кла-

сифікаційних процесів та вдосконалювати модель шляхом врахування додатко-

вих фізичних факторів. 
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ABSTRACT 
Purpose. To develop and validate a hybrid monotonic model of the hydrocyclone partition curve that 

combines a physics‐based logistic component, a data-driven residual correction, and an enforced 

monotonic output - for interpretable prediction of the cut size (𝑑50) and selection of operating set-

points to achieve a target 𝑑50.  

 

The methods. The partition curve (reduced partition to underflow (fraction) vs particle size) is rep-

resented by a logistic function with interpretable parameters 𝑑50 and steepness. The deviations of 

experimental data from this logistic baseline are learned by an ensemble machine learning method 

(gradient boosting regression), and the combined prediction is then calibrated using isotonic regres-

sion (PAV algorithm) to ensure strictly monotonic increase and correct probability bounds [0,1]. The 

model was trained and tested on an open experimental dataset of hydrocyclone tests spanning various 

apex (underflow orifice) / vortex finder (overflow pipe) diameters and feed pressures. Model valida-

tion uses 5-fold grouped cross-validation (GroupKFold by cyclone configuration); in addition, 95% 

bootstrap confidence intervals were computed for the average error, and probability maps were gen-

erated to estimate the chance of hitting a target cut size under varying conditions.  

 

Findings. The hybrid monotonic model achieved an average RMSE of ~0.14 (vs ~0.23 for the lo-

gistic-only baseline), demonstrating significantly higher accuracy. The model reproduces known 

pressure and geometry trends: increasing feed pressure or decreasing the apex/vortex diameters leads 

to a finer separation (lower 𝑑50). The hybrid model also provides valid cut-size estimates even in edge 

cases of incomplete separation (censored data) and yields robust recommended setpoints to attain a 

desired 𝑑50.  

 

The originality. We propose a hybrid logistic–isotonic model with residual learning that enforces a 

physically consistent monotonic partition curve within [0,1] and reduces prediction error. The work 

quantitatively establishes the dependence of 𝑑50 on setpoints (pressure, apex and vortex-finder diame-

ters) and introduces probability maps 𝑑 (|𝑑50 − 𝑑50
𝑑 |≤ Δ ) as a practical criterion for setpoint selection. 

https://doi.org/10.1016/j.powtec.2025.121355
https://doi.org/10.1145/775047.775151
https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1145/3514228
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.17632/vt3hthxstk.2
https://github.com/AndreiAblets/Hydrocyclone-d50-hybrid


Mining Science 

28 

Practical implementation. The resulting model can serve as a practical engineering tool for hydro-

cyclone operation: it enables quick estimation of the cut size with confidence intervals, helps select 

operating parameters (setpoints) to achieve a target cut size with a quantified probability of success, 

and provides maps of stable operating regimes - all without time-consuming CFD simulations or 

extensive experimental trials.  

 

Keywords: hydrocyclone, partition curve, cut size 𝑑50, isotonic regression, monotonic calibration, 

machine learning, setpoint. 
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