№79-6

Features of surface subsidence zones formed under the influence of underground mining of steeply dipping ore deposits in the Kryvyi Rih iron ore basin

M. Petlovanyi1

1Dnipro University of Technology, Dnipro, Ukraine

Coll.res.pap.nat.min.univ. 2024, 79:63–83

Full text (PDF)

https://doi.org/10.33271/crpnmu/79.063

ABSTRACT

Purpose. The study aims to investigate subsidence zones in the Kryvyi Rih Iron Ore Basin, considering their spatial distribution, geometric parameters, development dynamics, and formation factors determined by the applied ore deposit mining systems, as well as to assess their techno-environmental impact on natural and infrastructural objects in the region.

Methods. The research is based on the analysis of satellite imagery and GIS tools in Google Earth for the identification and measurement of geometric parameters of subsidence zones. The terrain profiling function was utilized to determine the width, depth, and area of the collapse zones, as well as to analyze the dynamics of their expansion over time.

Findings. As of today, 15 active subsidence zones with a total area exceeding 170 hectares have been identified in the Kryvyi Rih Iron Ore Basin. A correlation has been revealed between the geometric characteristics of the subsidence zones and the geotechnical conditions of ore deposit extraction, expressed through variations in the collapse shape coefficient. The historical dynamics of subsidence area changes over several decades indicate a gradual decrease in expansion rates after reaching the critical mining depth. However, irregular development patterns have been observed, with some zones undergoing steady expansion while others experienced sudden collapses linked to shear processes within the mined-out voids. It has been proven that backfilling with waste rock does not ensure long-term stability and can contribute to secondary collapses, especially in areas with complex hydrogeological conditions or significant underground voids.

Originality. A collapse shape coefficient has been proposed for assessing the geometric parameters of subsidence zones and the conditions of their formation. A systematic analysis of the historical dynamics of subsidence area changes has been conducted, establishing trends in their spatial and temporal expansion.

Practical implications. The obtained results can be applied for predicting further development of subsidence zones, assessing their risks to industrial and infrastructural objects, and developing alternative backfilling methods to ensure long-term geomechanical stability in the region.

Keywords: subsidence zones, iron ore mine, shear processes, geometric shape, development dynamics, backfilling with waste rock, techno-environmental hazard.

Перелік посилань

1. Maus, V., Giljum, S., daSilva, D.M., Gutschlhofer, J., da Rosa, R.P., Luckeneder, S., Gass, S.L.B., Lieber, M., & McCallum, I. (2022). An update on global mining land use. Scientific Data, 9(1), 433. https://doi.org/10.1038/s41597-022-01547-4

2. Shustov, O.O., Petlovanyi, M.V., Zubko, S.A., & Sherstiuk, Ye.A. (2019). Heomekhanichni problemy stiikosti pryrodno-tekhnohennykh masyviv rudnykh rodovyshch. Zbirnyk naukovykh prats Natsionalnoho hirnychoho universytetu, 58, 154–165.

3. Hendrychová, M., Svobodova, K., & Kabrna, M. (2020). Mine reclamation planning and management: Integrating natural habitats into post-mining land use. Resources Policy, 69, 101882. https://doi.org/10.1016/j.resourpol.2020.101882

4. Žibret, G., Gosar, M., Miler, M., & Alijagić, J. (2018). Impacts of mining and smelting activities on environment and landscape degradation – Slovenian case studies. Land Degradation & Development, 29(12), 4457–4470. https://doi.org/10.1002/ldr.3198

5. Kovrov, O., Pavlychenko, A., & Kulikova, D. (2024). Development of the wastewater treatment technology for the mine “Ternivska” of the Kryvyi Rih iron ore plant. Environmental Technology, 46(6), 908–921. https://doi.org/10.1080/09593330.2024.2371080

6. Cao, J., Huang, Q., & Guo, L. (2021). Subsidence prediction of overburden strata and ground surface in shallow coal seam mining. Research Square. Preprint. https://doi.org/10.21203/rs.3.rs-393197/v1

7. Ling, W., Zhu, Z., Feng, X., Wang, L., Wang, W., Li, Z., & Qiu, J. (2024). Procedure design and reliability analysis for prediction of surface subsidence of a metal mine induced by block caving method – A case study of Pulang copper mine in China. Minerals, 14(10), 1011. https://doi.org/10.3390/min14101011

8. Natsionalna dopovid pro stan navkolyshnoho pryrodnoho seredovyshcha v Ukraini u 2021 rotsi. (2022). Kyiv: Ministerstvo zakhystu dovkillia ta pryrodnykh resursiv Ukrainy.

9. Kuzmenko, O., Dychkovskyi, R., Petlovanyi, M., Buketov, V., Howaniec, N., & Smolinski, A. (2023). Mechanism of interaction of backfill mixtures with natural rock fractures within the zone of their intense manifestation while developing steep ore deposits. Sustainability, 15(6), 4889. https://doi.org/10.3390/su15064889

10. Behera, S.K., Mishra, D.P., Singh, P., Mishra, K., Mandal, S.K., Ghosh, C.N., Kumar, R., & Mandal, P.K. (2021). Utilization of mill tailings, fly ash and slag as mine paste backfill material: Review and future perspective. Construction and Building Materials, 309, 125120. https://doi.org/10.1016/j.conbuildmat.2021.125120

11. Yang, K., Zhao, X., Wei, Z., & Zhang, J. (2021). Development overview of paste backfill technology in China’s coal mines: a review. Environmental Science and Pollution Research, 28(48), 67957–67969. https://doi.org/10.1007/s11356-021-16940-6

12. Pysmennyi, S.V. (2019). Vyznachennia stiikoho prohonu oholennia pry rozrobtsi skladnostrukturnykh rudnykh pokladiv kamernoiu systemoiu rozrobky. Hirnychyi visnyk, 105, 142–148.

13. Stupnik, N.I., & Pismennii, S.V. (2012). Perspektivnie tekhnologicheskie varianti dalneishei otrabotki zhelezorudnikh mestorozhdenii sistemami s massovim obrusheniem rudi. Вісник Криворізького національного університету, 30, 3–7.

14. Bazaluk, O., Petlovanyi, M., Sai, K., Chebanov, M., & Lozynskyi, V. (2024). Comprehensive assessment of the earth’s surface state disturbed by mining and ways to improve the situation: case study of Kryvyi Rih Iron-ore Basin, Ukraine. Frontiers in Environmental Science, 12. https://doi.org/10.3389/fenvs.2024.1480344

15. Stupnik, N.I., & Kalinichenko, V.A. (2013). Problemi monitoringa dnevnoi poverkhno-sti v polyakh zakritikh i deistvuyushchikh shakht Krivorozhskogo zhelezorudnogo basseina. Збірник наукових праць Науково-дослідного гірничорудного інституту ДВНЗ «Криворізький національний університет», 54, 17–22.

16. Stupnik, M.I., & Kucheriavenko, I.A. (2011). Vyznachennia parametriv zony zsuvu zemnoi poverkhni pry pidzemnii rozrobtsi krutospadnykh plastopodibnykh rudnykh pokladiv znachnoho prostiahannia. V Materialakh mizhnarodnoi naukovo-praktychnoi konferentsii «Shkola pidzemnoi rozrobky», 212–218.

17. Kuzmenko, A.M., & Petlyovanii, M.V. (2014). Vliyanie strukturi gornogo massiva i poryadka otrabotki kamernikh zapasov na razubozhivanie rudi. Геотехнічна механіка, 118, 37–45.

18. Stupnik, M.I., & Malanchuk, Ye.Z. (2011). Vyznachennia parametriv zon zsuvu i obvalennia nanosnykh hlynystykh porid pry pidzemnii rozrobtsi rudnykh rodovyshch. Visnyk Natsionalnoho universytetu vodnoho hospodarstva ta pryrodokorystuvannia, 3(55), 178–182.

19. Qiu, X., He, X., Cao, R., Qiu, H., Shi, X., Gou, Y., Li, X., & Zhi, W. (2024). Study on the surface subsidence trend of fill mining in underground mines with different mining depths. Advances in Civil Engineering, 2024(1). https://doi.org/10.1155/2024/4407757

20. Vilkul, Yu.H., Yevtiekhov, V.D., & Stupnik, M.I. (2017). Tekhnohenni porushennia nadr Kryvorizkoho baseinu. Naslidky ta napriamky yikh minimizatsii. Forum hirnykiv, 31–37.