Partial restoration of tractive ability of rubber-cable tractive element with damaged cable base

I. Belmas1, D. Kolosov2, S. Onyshchenko2, I. Bobylova1

1 Dniprovsk State Technical University, Kamianske, Ukraine

2 Dnipro University of Technology, Dnipro, Ukraine

Coll.res.pap.nat.min.univ. 2020, 60:196-206


Full text (PDF)


Purpose. Development of a calculation algorithm of a part of restoration of tractive ability of rubber-cable tractive element, which has a broken cable.

Methodology of research is in construction of analytical models of interaction of cables in a rubber-cable tractive element using methods of mechanics of composite materials and in mathematical modeling of a stress-strain state of a rubber-cable tractive element with random cable breakages and partial restoration of rope tractive ability. Rubber-cable tractive element is considered a composite structure of parallel cables regularly placed in the same plane, which interact through a layer of rubber. Mathematical description of the process is based on mechanics of layered structures with hard and soft layers.

Findings. Analytical dependencies of coefficients of uneven distribution of forces between cables along a rope in an area of cable removal; distribution intensity of tangent stresses in rubber layers between cables; uneven distribution of tensile forces and twisting moment of a rope with partially removed and replaced cable are established. Expediency of replacing a part of a broken cable with a new part is justified by reducing maximum tangent stresses in a rubber shell of a restored tractive element.

Scientific novelty is in establishment of analytical dependencies of distribution of parameters of a stress-strain state of a rubber-cable tractive element with removed and replaced cable part.

Practical significance. Obtained dependencies allow determining rational length of a cable replacement part and developing an algorithm for calculating this part, which ensures minimum value of a coefficient of concentration of tensile forces of a cable for any rubber-cable tractive element. Established patterns make it possible to predict rope performance with high accuracy, including the cases of cable base breakages. Results can be used during design and operation of lifting and transporting machines with rubber-cable tractive elements.

Keywords: lifting and transporting machine,rubber-cable tractive element, cable base breakage, mathematical model, stress-strain state, restoration of tractive ability.References:

1.  Grujić, M., & Erdeljan, D., (2014). Advantages of high angle belt conveyors (hac) in mining. Applied Mechanics and Materials, (68), 73–77.

2.  Kolosov, D., Dolgov, O., Bilous, O.,&Kolosov, A. (2015). The stress-strain state of the belt in the operating parameters changes of the burdening conveyor. Theoretical and Practical Solutions of Mineral Resources Mining, 585-590.

3.  Averchenkov, V.I., Davydov, S.V., Dunaev, V.P., & Ivchenko, V.N. (2004). Konveyery s podvesnoy lentoy: monografiya. Moskva: Mashinostroenie.

4.  Pedchenko, O.S. (2007). Opredelenie geometricheskikh parametrov zheloba podvesnoy konveyernoy lenty. Gornyy informatsionno-analiticheskiy byulleten', (6), 373-376.

5.  Kolosov, L.V. (1987). Nauchnye osnovy razrabotki i primeneniya rezinotrosovykh kanatov pod''emnykh ustanovok glubokikh rudnikov. Dis. dokt. nauk: 05.05.06, 01.02.06. IGTM im. N.S. Polyakova NAN Ukrainy, Dnepropetrovsk.

6.  Belmas, I., Kolosov, D., Bilous, O., & Onyshchenko, S. (2018). Stress-strain state of a conveyor belt with cables of different rigidity and their breakages. Fundamental and applied researches in practice of leading scientific schools, 26(2), 231–238.

7.  Belmas, I.V., & Bobylova, I.T. (2012). Vplyv poryviv elementiv armuvannia na mitsnist ploskoho tiahovoho orhanu. Les problemes contemporains de la technosphere et de la formation des cadres d’ingenieurs. Proceedings of the 6th International Scientific and Methodical Conference, Donetsk, 88-91.

8.  Belmas, I.V., & Kolosov, D.L. (2017). Napruzheno-deformovanyi stan ploskoho kanata zumovlenyi poryvamy tiahovykh elementiv ta konstruktsiieiu barabana pidiomnoi mashyny. Zbirnyk naukovykh prats Natsionalnoho hirnychoho universytetu, (50), 163-170.

9.  Kolosov, D.L., & Bilous, O.I. (2016). Napruzheno-deformovanyi stan humotrosovoho kanata trubchastoi formy z ushkodzhenym trosom zamka. Hirnycha elektromekhanika ta avtomatyka, (97), 99-103.

10.  Tantsura, H.I. (2010). Hnuchki tiahovi orhany v mashynobuduvanni. Stykovi ziednannia konveiernykh strichok: monohrafiia. Dniprodzerzhynsk: DDTU.