№82-12
Statistical analysis of hydrological processes in the Samara river basin under climate change
D. Rudakov1,https://orcid.org/0000-0001-7878-8692
Yu. Bytko1 https://orcid.org/0009-0006-1877-9587
1Dnipro University of Technology, Dnipro, Ukraine
Coll.res.pap.nat.min.univ. 2025, 82:139-149
Full text (PDF)
https://doi.org/10.33271/crpnmu/82.139
ABSTRACT
Purpose. The purpose of this study is to identify the patterns of changing the hydrological regime of the Samara River under climate change using data from international satellite monitoring platforms accumulated over the past decades, taking into account the man-made impact, and to forecast long-term changes in river discharge.
The methods. The calculation included interpolation of satellite monitoring data on a regular network with evaluated weighted average temperatures and precipitation amounts for water management areas of the Samara River basin above the gauging station in the village of Kocherezhki, statistical analysis of time series of discharges with separation of natural and man-made discharge components, regression and correlation analysis, and forecast of discharge changes under two climate change scenarios.
Findings. According to the monitoring data, we estimated the natural component of the river discharge and identified the linear regression on the average annual temperatures and precipitations, as well as the features of the distribution of these parameters during the studied period from 1981 to 2020. Based on these data, the average river discharge was forecasted under the A2 and A1B climate change scenarios, considering previous studies on temperature and precipitation trends. Besides, we identified statistically significant correlations between the average annual discharge, temperature, and precipitation, considering the anthropogenic impact.
The originality. For the first time, regressions for the Samara River discharge, including its natural component, the average annual air temperatures, and precipitation, were identified using area-weighted average values. This enables predicting the response of the river basin as an integral hydrological system to long-term climate changes.
Practical implementation. The obtained regression patterns based on time series of flows, temperature, and precipitation form a scientific justification for developing the strategy of sustainable use and protection of water resources within the significant area of the Dnieper River sub-basin, against the background of reducing coal mining and decreasing mine water discharge.
Keywords: river basin, climate change, satellite monitoring, time series, temperature, precipitation, flow, forecast.
References
1. Stepanenko, S.M., Polovyi, A.M., Loboda, N.S., ta in. (2015). Klimatychni zminy ta yikh vplyv na sfery ekonomiky Ukrainy: monohrafiia. Odesa: Vyd. «TES».
2. Snizhko, S., Shevchenko, O., & Didovets, Yu. (2021). Analiz vplyvu klimatychnykh zmin na vodni resursy Ukrainy. Tsentr ekolohichnykh initsiatyv «Ekodiia».
3. Khilchevskyi, V.K., Romas, I.M., Romas, M.I., Hrebin, V.V., & Shevchuk, I.O. (2007). Hidroloho-hidrokhimichna kharakterystyka minimalnoho stoku richok baseinu Dnipra. Nika-Tsentr.
4. Global Surface Runoff estimation with ECMWF Daily Precipitation data through Google Earth Engine https://earthmap.org/documents/RunOffEstimation.pdf
5. Ulytskyi, O.A., D’iachenko, N.O., Boiko, K.E., Orlovskyi, A.V., Artemenko, I.O., & Zosyma, V.H. (2021). Otsiniuvannia ekolohichnoi nebezpeky vplyvu shakhtnykh vod stavka-nakopychuvacha b. Taranova na vodne seredovyshche Zakhidnoho Donbasu. Derzhavna ekolohichna akademiia pisliadyplomnoi osvity ta upravlinnia. https://doi.org/10.32846/2306-9716/2021.eco.7-34.6
6. Kovrov,O.S., Kulikova,D.V., & Kravchenko,N.D. (2020). Obgruntuvannia kompleksnoi tekhnolohii ochyshchennia shakhtnykh vod ta dymovykh haziv kotelni. Ekolohichni nauky, 29, 12–18. https://doi.org/10.32846/2306-9716/2020.eco.2-29.1.2
7. Yevhrashkina, H.P. (2023). Vplyv hirnychodobuvnoi promyslovosti na hidroheolohichni ta gruntovo-melioratyvni umovy terytorii. Dnipropetrovsk: Monolit.
8. Omelchuk,A. Yu. (2013). Osnovni rezultaty hidroheolohichnykh doslidzhen na terytoriiakh, prylehlykh do stavkiv-nakopychuvachiv skydnykh shakhtnykh vod Zakhidnoho Donbasu. Visnyk Dnipropetr. un-tu. Seriia : Heolohiia. Heohrafiia, 15, 94–99.
9. Ekolohichnyi pasport Dnipropetrovskoi oblasti za 2016 rik.
10. Ekolohichnyi pasport Dnipropetrovskoi oblasti za 2018 rik.
11. Ekolohichnyi pasport Dnipropetrovskoi oblasti za 2020 rik.
12. Ekolohichnyi pasport Donetskoi oblasti za 2017 rik.
13. Derzhavne ahentstvo vodnykh resursiv Ukrainy https://www.davr.gov.ua/
14. NASA Prediction Of Worldwide Energy Resources https://power.larc.nasa.gov/data-access-viewer/
15. Copernicus Climate Data Store (CDS) https://cds.climate.copernicus.eu
16. National Centers for Environmental Information https://www.ncei.noaa.gov/access/search


