№57-3

Research into heat and mass indicators of coal gasification process

P. Saik1, V. Lozynskyi1, V. Falshtynskyi1, M. Demydov1, K. Hanushevych1

1Dnipro University of Technology, Dnipro, Ukraine

Coll. res. pap. nat. min. univ. 2019, 57:32-44

https://doi.org/10.33271/crpnmu/57.032

Full text (PDF)

ABSTRACT

Purpose.On the basis of conducted analytical and experimental researches, to establish the parameters of the heat and mass balance as well as energy balance of coal gasification.

Methods.In order to achieve this purpose, an integrated approach has been used, including analytical and experimental research. Analytical researches were carried out using the software product "MTB SPGV", and experimental ones – on an installation, designed and patented at the department of underground mining of Dnipro University of Technology which is equipped with the appropriate control and measuring equipment.

Findings.Findings. The possibility of replacing natural types of fuel with an alternative energy one – generator gas is considered. Evaluated its thermal characteristics compared to natural gas. The course of heat and mass, as well as the energy balances of coal gasification, is covered. The basis of making the heat and mass balance was used stoichiometric (by chemical equations) and thermochemical calculations. Conducting analytical studies allows us to visualize the degree of the theoretical amount of used substances and facilitates the analysis of digital data. The conduction of experimental studies allows taking into account the zonality of the thermal field’s distribution around the underground gasifier, which influences the stability of the reaction in it and the output of combustible gases.

Originality. The distribution of the output of generator gases and chemical products in the analytical and experimental studies is established, which makes it possible to determine the efficiency of conducting the process of coal gasification with the subsequent possibility of balancing the blowing mixtures in the underground gasifier.

Practical implications.The chemical and thermal efficiency, which will allow to receive a technical or energy directional-quality product with further synthesis of chemical substances, will provide a high degree of balance of the physical and chemical processes in the underground gasifier.

Keywords:underground gasification, generator gas, heat and mass balance, energy balance, chemical and thermal efficiency

References

  1. Saik, P., Petlovanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221-231. 
    https://doi.org/10.4028/www.scientific.net/SSP.277.221
     
  2. Eissa, M. M. (Ed.). (2015). Energy Efficiency Improvements in Smart Grid Components.
    https://doi.org/10.5772/58493
  3. Hamanaka, A., Su, F., Itakura, K., Takahashi, K., Kodama, J., & Deguchi, G. (2017). Effect of Injection Flow Rate on Product Gas Quality in Underground Coal Gasification (UCG) Based on Laboratory Scale Experiment: Development of Co-Axial UCG System. Energies, 10(2), 238. 
    https://doi.org/10.3390/en10020238
  1.  Lozynskyi, V.H., Saik, P.B., Pavalenko, O.V., & Koshka, D.O. (2010). Analiz suchasnoho stanu i perspektyvy promyslovoho zastosuvannia sverdlovynnoi pidzemnoi hazyfikatsii vuhillia v Ukraini. Materialy IV mizhnarodnoi naukovo-praktychnoi konferentsii “Shkola pidzemnoi rozrobky”, 351-363
  2. Saik, P., Falshtynskyi, V, Dychkovskyi, R., & Lozynskyi, V. (2015). Revisiting the preservation of uniformity advance of combustible face. Mining of Mineral Deposits, 9(4), 487–492. 
    https://doi.org/10.15407/mining09.04.487
  1. Alfa Invest(2019). Retrieved from: https://a-invest.com.ua/aktualno/tablitsa-teplotvornosti
  2. Kolokolov, O.V. (2000). Teoriya i praktika termokhimicheskoy tekhnologii dobychi i pererabotki uglya. Dnepropetrovsk: NGA Ukrainy.
  3. Saik, P., & Lozynskyi, V. (2016). Heneratornyi haz yak alternatyva pryrodnomu hazu. V Materialy II mizhnarodnoi naukovo-tekhnichnoi konferentsii “Hazohidratni tekhnolohii u hirnytstvi, naftohazovii spravi, heotekhnitsi ta enerhetytsi” 34-35.
  4. Dzhishkariani, T.S., & Bzhalava, N.P. (2005). Komp'yuternoe modelirovanie rascheta protsessov gazifikatsii iskopaemykh ugley. Energiya, 3(35), 24-28.
  5. Falshtynskyi, V.S., Dychkovskyi, R.O., Ruskykh, V.V., Saik, P.B., & Lozynskyi, V.H. (2016) Stend dlia doslidzhennia protsesiv hazyfikatsii plastiv tverdoho palyva. Patent №112375 na vynakhid, Ukraina. Retrieved from: http://uapatents.com/5-112375-stend-dlya-doslidzhennya-procesiv-gazifikaci-plastiv-tverdogo-paliva.html
  6. Lutsenko, Yu.V., Sharshanov, A.Ya., & Yaroviy, E.A. (2008). Matematicheskaya model' obrazovaniya goryuchikh gazov pri podzemnoy gazifikatsii uglya. Problemy pozharnoy bezopasnosti, (28), 105-115.
  7. Kreynin, E.V. (2004). Netraditsionnye termicheskie tekhnologii dobychi trudnoizvlekaemykh topliv: ugol', uglevodorodnoe syr'ye. Moskva: Nedra.
  8. Kreynin, E.V. (1982). Podzemnaya gazifikatsiya ugley. Moskva: Nedra.
  9. Gayko, G.I., Zaev, V.V. & Shul'gin, P.N. (2012). Utilizatsiya teplovoy energii pri podzemnoy termokhimicheskoy pererabotke ugol'nykh plastov. Alchevsk: DonGTU.
  10. Bondarenko, V.I. (2011). Obosnovanie kriteriev prigodnosti i parametrov gazifikatsii ugol'nykh plastov Solenovskogo mestorozhdeniya i plastov shakht MPO «Kuzbass». Otchet o NIR. Dnepropetrovsk: Natsional'nyy gornyy universitet.
  11. Falshtynskyi, V.S., Dychkovskyi, R.O., & Stanchyk, K. (2009). Obgruntuvannia parametriv materialnoho i teplovoho balansu shakhtnoho eksperymentalnoho pidzemnoho i teplovoho balansu shakhtnoho eksperymentalnoho pidzemnoho hazoheneratora. Forum hirnykiv, 77-83.
  12. Lozynskyi, V., Dychkovskyi, R., Saik, P., & Falshtynskyi, V. (2018). Coal Seam Gasification in Faulting Zones (Heat and Mass Balance Study). Solid State Phenomena, (277), 66-79. 
    https://doi.org/10.4028/www.scientific.net/SSP.277.66
  1. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., Malanchuk Z., & Malanchyk, Ye. (2018). Substantiation into mass and heat balance for underground coal gasification in faulting zones. Inzynieria Mineralna, 19(2), 289-300. 
    https://doi.org/10.29227/IM-2018-02-36
  1. Gayko, G.I., Shul'gin, P.N., & Zaev, V.V. (2012). Modelirovanie teplovykh protsessov v podzemnom gazogeneratore metodom konechnykh elementov. Sbornik nauchnykh trudov DonGTU, (36), 61-70.
  2. Dychkovskyi, R.O. (2013). Naukovi zasady syntezu tekhnolohii vydobuvannia vuhillia u slabometamorfizovanykh porodakh, Dnipropetrovsk: Natsionalnyi hirnychyi universytet.
  3. Dychkovskyi, R.O., Tabachenko, M.M., Falshtynskyi, V.S., Lozynskyi, V.H., & Saik, P.B. (2017). Adaptatsiia tekhnolohii sverdlovynnoi pidzemnoi hazyfikatsii vuhillia. Dnipro: Derzhavnyi VNZ «Natsionalnyi hirnychyi universytet» http://ir.nmu.org.ua/handle/123456789/152333

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

376940
Today
This month
Total
44
22340
376940