№58-16

Combinatorial method for determining the optimum flow distribution plan for mining and municipal an electric vehicle and charging stations

V. Kravets1, K. Ziborov1, K. Bass1, V. Krivda1, S. Fedoriachenko1

1Dnipro University of Technology, Dnipro, Ukraine

Coll.res.pap.nat.min.univ. 2019, 58:178-191

http://doi.org/10.33271/crpnmu/58.178

Full text (PDF)

ABSTRACT

Purpose. Changes in the optimal plan for the distribution of the flow of vehicles and profits related to the structural transformations of the production capacity of the charging station, including labor resources, consumables, equipment and corresponding adjustments to its mathematical model. Using a combinatorial representation and the use of chain diagrams, a new method has been developed for determining the optimal distribution plan for a stream of vehicles in the charging station of industrial enterprises, which provides the greatest profit for the enterprise.

Research methodology. A mathematical model of the flow of vehicles at the charging station is based on the objective limitations associated with the cyclical capacity of the station. The optimal distribution plan for the flow of vehicles at the charging station is based on geometrical representations as the greatest distance from the origin of the plane (hyperplane) passing through the top of the polyhedron of the region of feasible solutions and is oriented along the gradient of the objective function (enterprise profit).

The results of the study. Using a combinatorial representation and chain diagrams, a new method was developed for determining the optimal distribution plan for the flow of vehicles in the charging station of industrial enterprises, which ensures the greatest profit of the enterprise.

Scientific novelty developed a new method for determining the optimal distribution plan of the flow of vehicles on the charging station of industrial enterprises, provides the greatest profit of the enterprise. The task becomes relevant in the light of the electrification of industrial transport and the improvement of batteries for them.

Practical value. This mathematical apparatus can be transferred to the conditions of a mining enterprise for the application of electrified industrial transport.

Keywords: mathematical apparatus, electrified industrial transport, combinatorial representation, charging station

References:

  1. Nordelöf,A., Messagie,M., Tillman,A.M., Söderman,M.L.,& Van Mierlo, J. (2014) Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—what can we learn from life cycle assessment. Int. J. Life Cycle Assessment, 19 (11) 1866-1890
    https://doi.org/10.1007/s11367-015-1004-6
  2. Jakobsson,N., Gnann,T., Plötz,P., Sprei,F.,&Karlsson,S.(2016)Are multi-car households better suited for battery electric vehicles? Driving patterns and economics in Sweden and Germany, Transport. Res. Part C: Emerging Technol., vol. 65, April 2016, 1-15,
    http://doi.org/10.1016/j.trc.2016.01.018.
  3. Dütschke, E., Schneider, U., Sauer, A., Wietschel, M., Hoffmann, J.,&Domke, S. (2011) Roadmap zur Kundenakzeptanz - Zentrale Ergebnisse der sozialwissenschaftlichen Begleitforschung in den Modellregionen. Fraunhofer ISI, Federal Ministry of Transport, Building and Urban Development (Bundesministerium für Verkehr, Bau und Stadtentwicklung) (BMVBS), Berlin, Germany.
  4. NPE, 2015. Ladeinfrastruktur für Elektrofahrzeuge in Deutschland. Statusbericht und Handlungsempfehlungen 2015. National Platform for Electromobility (NPE) – Working Group 3 – Charging infrastructure and grid integration. Available online at: http://nationale-plattform-elektromobilitaet.de/fileadmin/user_upload/Redaktion /NPE_AG3_Statusbericht_LIS_2015_barr_bf.pdf, last accessed: 09/15/2016.
  5. Schroeder,A.& Traber, T. (2012)The economics of fast charging infrastructure for electric vehicles Energy Policy, 43 , 136-144.
    http://doi.org/10.1016/j.enpol.2011.12.041
  6. EC (European Commission) (2013): Proposal for a Directive of the European Parliament and the Council on the deployment of alternative fuels infrastructure. EC COM/2013/018 final. Brussels, 24.1.2013.
  7. Gnann,T. (2015)Market Diffusion of Plug-in Electric Vehicles and Their Charging Infrastructure (Ph.D. thesis)Karlsruhe, Germany: Fraunhofer Publishing, Karlsruhe Institute of Technology (KIT),
  8. Till Gnann, Simon Funke, Niklas Jakobsson, Patrick Plötz, Frances Sprei,&Anders Bennehag(2018)Fast charging infrastructure for electric vehicles: Today’s situation and future needs, Transportation Research Part D: Transport and Environment, Volume 62, 314-329
    https://doi.org/10.1016/j.trd.2018.03.004.
  9. Taran, I.O. (2012) Vzaiemozviazok kiltsevoho koefitsiienta peredachi podviinykh rozdilnykh peredach z kharakterystykoiu rehuliuvannia pry vykhodi planetnoi peredachi. Naukovyi Visnyk Natsionalnoho hirnychoho universytetu. Vol. 3, 75 - 85.
  10. Franchuk, V.P., Ziborov, K.A., Krivda, V.V., & Fedoriachenko, S.O., (2018) Vplyv teplofizychnykh protsesiv na fryktsiini vlastyvosti pary koleso-reika v kontaktnii oblasti. 46-52
  11. Ziborov, K.A., Protsiv, V.V., Fedoriachenko, S.O., & Verner, I.V. (2016) Pro vplyv konstruktyvnykh parametriv shakhtnoho zaliznychnoho transportu na pokaznyky bezpeky Mekhanika, materialoznavstvo ta inzheneriia, 2 (1), с. 63-70.

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

477201
Today
This month
Total
156
6839
477201