№58-14

Geomechanical problems of stability of natural-technogenic ore deposits

O. Shustov1, M. Petlovanyi1, S. Zubko1, Ye. Sherstuk1

1Dnipro University of Technology, Dnipro, Ukraine

Coll.res.pap.nat.min.univ. 2019, 58:154-165

http://doi.org/10.33271/crpnmu/58.154

Full text (PDF)

ABSTRACT

Purpose. To give the most significant problems in the development of ore deposits in Ukraine from the point of view of maintaining the sustainability of natural-technogenic massifs and develop recommendations for solving these problems.

The methods. To calculate the stability parameters of the blade No. 2 of the Petrovsky surface mine of the PSC “TsGOK”, the method of algebraic addition of forces along the most stressed surface is used. When choosing the appropriate option to eliminate the consequences of a landslide, the method of technical and economic comparison is used. Geomechanical problems and the consequences of reducing the stability of the host rocks, ore and stowing massif during underground mining were systematized by the generalization method.

Findings. According to the results of the analysis of mine documentation and surveying of the chamber’s treatment spaces, the floor of the currently almost completed floor of 640-740 m of bookmark collapse cases was recorded in at least 18 chambers, with the roof and sides of the chambers being the main dump areas. It has been established that the total costs of eliminating the consequences of the formation of a shift of 2.5 ha are 66.8 and 60.2 million UAH. respectively, according to the variant with the landslide body cleaning and the variant using the excited area for additional storage of overburden rocks.

The originality. It is established that the values of sedimentation of the massif of rocks reached 70-195 mm. The settling velocity of the array in some areas reached 4 - 6 mm / month. The classification of geomechanical problems and consequences of reduction of stability of natural-technogenic massif at underground mining of iron ores with laying is resulted.

Practical implication. The geomechanical problems with the development of ore deposits with a bookmark are useful for developing measures to increase the stability of elements of development systemsare identified.Four options are proposed for eliminating the consequences of a landslide: cleaning the body of a landslide at the licensed border of land allotment and unloading the slope of the dump at the site of shift to a steady state; attraction of disturbed area to land allotment; the use of the area disturbed by the shift for storing the rock mass; harvesting the shift to the limit of land allotment without flattening the slope. From the point of view of the stability of the slope and economic feasibility, the third option is recommended.

Keywords: rock mass stability, development of ore deposits, massif subsidence, liquidation of the landslide consequences, laying of worked out space.

References:

1.    USGS – United States Geological Survey. (2018). Mineral Resources Program. [online]. Available at: http://minerals.usgs.gov/
2.    Derzhavna fiskalna sluzhba Ukrainy. (2019). Available at:
http://sfs.gov.ua/
3.    Petlovanyi, M., Kuzmenko, O., Lozynskyi, V., Popovych, V., Sai, K., &Saik, P. (2019). Review of man-made mineral formations accumulation and prospects of their developing in mining industrial regions in Ukraine. Mining of Mineral Deposits, 13(1), 24–38.
https://doi:10.33271/mining13.01.024
4.    Bulat, A.F., Chetverik, M.S., Bubnova, E.A., & Levchenko, E.S. (2017). Problemy i perspektivy ispol'zovaniya narushennykh otkrytymi i podzemnymi razrabotkami geologicheskikh sred. Metallurgicheskaya i gornorudnaya promyshlennost', (1), 90-97.
5.    Peregudov, V.V., Gritsina, A.E., & Dragun, B.T. (2010). Current state and future development of iron-ore industry in Ukraine. Metallurgical and Mining Industry, 2(2), 145-151.
6.    Stupnik, N.I., & Pis'mennyy, S.V. (2012). Perspektivnye tekhnologicheskie varianty dal'neyshey otrabotki zhelezorudnykh mestorozhdeniy sistemami s massovym obrusheniem rudy. Visnyk Kryvorizkoho Natsionalnoho Universytetu, (30), 3-6.
7.    Khomenko, O., Kononenko, M., & Myronova, I. (2017). Ecological and technological aspects of iron-ore underground mining. Mining of Mineral Deposits, 11(2), 59–67.
https://doi.org/10.15407/mining11.02.059
8.    Kuzmenko, O., Petlyovanyy, M., & Heylo, A. (2014). Application of fine-grained binding materials in technology of hardening backfill construction. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 465-469.
https://doi.org/10.1201/b17547-79
9.    Kuz'menko, A.M., Petlevanyy, M.V., & Usatyy, V.Yu. (2010). Vliyanie tonkoizmel'chennykh fraktsiy shlaka na prochnostnye svoystva tverdeyushchey zakladki. V Materialakh Mizhnarodnoi naukovo-praktychnoi konferentsii «Shkola pidzemnoi rozrobky» (s. 383-386). Dnipropetrovsk: Natsionalnyi hirnychyi universytet.
10.  Zubko, S.A., & Petlevanyy, M.V. (2018). Ekonomicheskaya tselesoobraznost' optimizatsii parametrov sistemy razrabotki rudnoy zalezhi v neustoychivykh vmeshchayushchikh porodakh. Zbirnyk naukovykh prats Natsionalnoho hirnychoho universytetu, (55), 39-52.
11.  Forster, K., Milne, D., & Pop, A. (2007). Mining and rock mass factors influencing hangingwall dilution. Rock Mechanics: Meeting Society’s Challenges and Demands, 1361-1366.
https://doi.org/10.1201/noe0415444019-c169
12.  Urli, V., & Esmaieli, K. (2016). A stability-economic model for an open stope to prevent dilution using the ore-skin design. International Journal of Rock Mechanics and Mining Sciences, (82), 71-82.
https://doi.org/10.1016/j.ijrmms.2015.12.001
13.  Petlovanyi, M., Lozynskyi, V., Zubko, S., Saik, P., & Sai, K. (2019). The influence of geology and ore deposit occurrence conditions on dilution indicators of extracted reserves. Rudarsko Geolosko Naftni Zbornik, 34(1), 83-91.
https://doi.org/10.17794/rgn.2019.1.8
14.  Kuz'menko, A.M., & Petlevanyy, M.V. (2014). Vliyanie struktury gornogo massiva i poryadka otrabotki kamernykh zapasov na razubozhivanie rudy. Heotekhnichna mekhanika, (118), 37-45.
15.  Chistyakov, E., Ruskih, V., & Zubko, S. (2012). Investigation of the Geomechanical Processes while Mining Thick Ore Deposits by Room Systems with Backfill of Worked-Out Area. Geomechanical Processes During Underground Mining –Proceedings of the School of Underground Mining, 127-132.
https://doi.org/10.1201/b13157-23
16.  Khomenko, O., Kononenko, M., & Petlovanyi, M. (2015). Analytical modeling of the backfill massif deformations around the chamber with mining depth increase. New Developments in Mining Engineering, 265-269.
https://doi.org/10.1201/b19901-47
17.  Emad, M.Z. (2017). Numerical modelling approach for mine backfill. Sādhanā, 42(9),1595-1604.
https://doi.org/10.1007/s12046-017-0702-0
18.  Kuzmenko, O.M., & Petlovanyi, M.V. (2017). Stiikist shtuchnoho masyvu pry pidzemnii rozrobtsi potuzhnoho rudnoho pokladu na velykii hlybyni. Zbirnyk naukovykh prats Natsionalnoho hirnychoho universytetu, (50), 56-62.
19.  Kononenko, M.M., Petlovanyi, M.V., & Zubko, S.A. (2014). Napruzheno-deformovanyi stan masyvu navkolo kamer druhoi cherhy vidpratsiuvannia. Heotekhnichna mekhanika, (115), 120-130.
20.  Timoshuk, V., Demchenko, J., & Sherstuk, Y. (2010). The role of natural and technogenic components in failure of geomechanical stability of the territories which are in the influence zone of mining objects. New Techniques and Technologies in Mining, 189–192.
https://doi.org/10.1201/b11329-31
21.  Kuzmenko, O., & Petlovanyi, M. (2015). Substantiation the expediency of fine gridding of cementing material during backfill works. Mining of Mineral Deposits9(2), 183-190.
https://doi.org/10.15407/mining09.02.183
22.  Drizhenko A.Yu., Shustov, A.A., Adamchuk, A.A., & Nikiforova, N.A. (2017). Sovershenstvovanie tekhnologii otkrytoy razrabotki zhelezorudnykh kar'yerov Ukrainy pri ikh uglubke. Zb. nauk prats NHU,52. 79-86.

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

477201
Today
This month
Total
156
6839
477201