№59-14
Energy saturated components of solid rocket fueland their use in explosives
L. Shiman1,E.Ustimenko1, V.Sobolev2, V. Kulivar2
1State Enterprise Research-Industrial Complex «Pavlograd Chemical Plant», Pavlograd, Ukraine.
2Dnipro University of Technology, Dnipro, Ukraine.
Coll.res.pap.nat.min.univ. 2019, 59:156-166
https://doi.org/10.33271/crpnmu/59.156
Full text (PDF)
ABSTRACT
Objective is - to study characteristics of high-energy products obtained with the specified physical and chemical parameters as a result of advanced chemical processing of solid rocket fuel to produce elements of non-electric system of the initiation of explosives and optical detonators.
Research methods. Energy-saturated products were used; the products were obtained while utilizing solid rocket fuel of intercontinental ballistic rockets PC-22 and some ammunition supplies: Octogen, ammonium or potassium perchlorate, hexogen extracted from the ammunition supplies. Differential and thermal gravitational analyses have made it possible to study all the products aimed at producing elements of non-electric initiation system and emulsion explosives. The Voodmate device was used to determine detonation velocity of the explosive charges.
Results. Conditions of safe handling of solid rocket fuel of intercontinental ballistic rockets after its long-time storage have been analyzed. Solid fuel was extracted in terms of the specially developed laboratory and testing complex. Physical, chemical, and explosive properties of the samples of both solid rocket fuel and high-energy components, obtained as a result of advanced chemical fuel processing, have been studied. Ammonium perchlorate, potassiumperchlorate, and Octogen extracted from the rocket fuel were analyzed for their sensitivity to impact, friction, electrostatic discharge, detonation impulse, vibration loads, and action of fulminating detonator; they were also studies for chemical and thermal resistance as well as TNT equivalent.
Scientific novelty. It has been determined that transition of ammonium perchlorate from the polymer binder to water solution depends on the type and size of the solid fuel samples, time mode of the water medium effect upon the solid fuel, and temperature. The studies have resulted in the experimental dependences of ammonium perchlorate concentration upon the technique of solid fuel sample preparation, water temperature, and period of water action in terms of the fixed temperature. Dependences of threshold ignition of Octogen samples upon the energy and geometry features of laser monopulse have been specified.
Practical implications. A technology has been developed, and manufacturing has been organized to recycle solid rocket fuel involving a complex of different stage and including hydromechanical fuel extraction from the engine case, mechanical grinding of the obtained product, advanced chemical processing of the fuel with the extraction of oxidizers and high-energy components which are not produced in Ukraine.
Keywords:rocketrecycling, explosives, detonation, chemical technologies, detonation system
References:
1. Tukhvatullin, Z.A. (1999)Utilizatsiya tverdotoplivnykh raket strategicheskogo naznacheniya v Udmurtii. Tekhnologiya korporatsii "Lokkhid Martin". Votkinsk: Udmurtiya.
2. Shiman, L.N., Ustimenko, E.B., Golin'ko, V.I., & Sobolev, V.V. (2013) Bezopasnost' protsessov proizvodstva i primenenii emul'sionnykh vzryvchatykh veshchestuv s komponentami utiliziruemykh vooruzheniy. Dnepropetrovsk: Lira.
3. Gustafsson, R. (1977) Shvedskaya tekhnika vzryvnykh rabot. (G.P. Demidyuk, Ed. & Trans.). Moskva: Nedra.
4. Baron V.L., & Kantor V.Kh. (1989) Tekhnika i tekhnologiya vzryvnykh rabot v SShA. Moskva: Nedra.
5. Chernai, A.V., Sobolev, V.V., Ilyushin, M.A., & Zhitnik, N.E. (1994) Generating mechanical pulses by the laser blasting of explosive coating. Combustion, Explosion, and Shock Waves. 30(2), 239-242.
https://doi.org/10.1007/BF00786134
6. Chernai, A.V., Sobolev, V.V., Chernaj, V.A., Ilyushin, M.A., & Dlugashek, A. (2003) Laser initiation of charges on the basis of di-(3-hydrazino-4-amino-1,2,3-triazol)-copper (II) perchlorate. Fizika Goreniya i Vzryva. 39 (3), 105-110.
https://doi.org/10.1023/A:1023852505414
7. Soboliev, V., & Chernai, V. (1998) Yavyshche anomalno velykoi chutlyvosti vybukhovykh spoluk do detonatsiinoho peretvorennia pry dii lazernoho vyprominiuvannia. Naukovi zapysky. 1, 289–296.
8. Sobolev,V., Chernai,A., & Studinsky,N.(1996)OPSIN– anewsystemofblast-holechangeblastinginexplosives. ProcedingsoftheFifth International Simposium on Mine Planning and Equipment Selection. 441-443.
9. Ilyushin, M.A., Sobolev, V.V., & Chernay, V.A. (2001) Initsiiruyushchie vzryvchatye veshchestva i sostavy v opticheskikh sistemakh initsiirovaniya pirosredstv. Visnyk NHAU, 1, 73–76.
10. Kuratov, S.E., Serezhkin, A.A., & Chesnokov, A.A. (2015) Fiziko-matematicheskaya model' lazernogo detonatora. Fiziko-khimicheskaya kinetika v gazovoy dinamike, 16(1), 1-9.
11. Rekomendatsiipoperevozkeopasnykhgruzov, rukovodstvopoispytaniyamikriteriyam(1995). Metodika OON5(а).
12. Shestak, Ya. (1987). Teoriya termicheskogo analiza. Moskva: Mir.
13. Afanas'yev, G.T., & Bobolev, V.K. (1968) Initsiirovanie tverdykh vzryvchatykh veshchestv udarom. Moskva: Nauka.
14. Ustimenko, E.B., Shiman, L.N., Podkamennaya, L.I., & Kirichenko, A.L. (2007) Opyt ispol'zovaniya produktov pererabotki TRT, izvlekaemogo gidromekhanicheskim metodom iz korpusov raketnykh dvigateley, v sostavakh promyshlennykh vodosoderzhashchikh VV. Kompleksnaya utilizatsiya obychnykh vidov boepripasov: mezhdunar. konf., tezisy dokl., 211-215.
15. Shiman, L.N., Ustimenko, E.B., Podkamennaya, L.I., & Tereshchenko, I.P. (2007) Opyt primeneniya neelektricheskoy sistemy initsiirovaniya marki "Prima-ERA" dlya vzryvaniya skvazhinnykh zaryadov vzryvchatykh veshchestv na nerudnykh i rudnykh kar'yerakh. Visnyk KDPU, 5, 87–90.
16. Ilyushin, M.A., Smirnov, A.V., & Sudarikov, A.M. (2010). Metallokompleksy v vysokoenergeticheskikh kompozitsiyakh: monografiya. (I.V. Tselinskiy, Ed.). Sankt-Peterburg: LGU im. A.S. Pushkina.
17. Karabanov, Yu.F., Afanas'yev, G.T., & Bobolev, V.K. (1977) Zazhiganie tverdykh vtorichnykh VV korotkim impul'som OKG. Khimicheskaya fizika protsessov goreniya i vzryva. Gorenie kondensirovannykh sistem. 5–8.
18. Sobolev, V.V., & Chernay, A.V. (2013) Ispol'zovanie metoda Monte-Karlo dlya resheniya zadachi vozbuzhdeniya detonatsii v zaryade VV lazernym monoimpul'som. Informatsionnyy byulleten' USIV. 1, 3-8.
19. Sobolev,V.V., Shyman,L.N., Nalisko, M.M. & Kyrychenko, O.L.(2017) Computational modeling in research of ignition mechanism of explosives by laserradiation. Naukovyi visnykNatsionalnoho hirnychoho universytetu. No. 6., 53-60.