№60-09

Issues of possible ignitions of methane-air mixture in the mine due to the implementation of mechanoelectric and piezoelectric effects during coal mining

S. Mineev1, S. Makeiev1, І. Belikov2, P. Samopalenko3, А. Golovko4

1Institute of Geotechnical Mechanics Named by N. Poljakov of National Academy of Sciences of Ukraine, Dnipro, Ukraine

2The Central Headquarters of the State Paramilitary MinеRescue Service of Coal Industry of Ukraine, Mirnograd, Ukraine

3The Eighth Militarized Mine-Rescue Detachment, Pavlograd, Ukraine

4The Tenth Militarized Mine-Rescue Detachment, Mirnograd, Ukraine

Coll.res.pap.nat.min.univ. 2020, 60:93-105

https://doi.org/10.33271/crpnmu/60.093

Full text (PDF)

ABSTRACT

The purpose of the work is the study and justification of the possible causes of ignitions of methane-air mixture during the tunnelling of workings and the excavation of coal in the mines

Research methods. Analysis of the physical and mathematical models of the origin and development of gas-dynamic phenomena with the subsequent ignition of methane in coal mines was investigated for justify its reasons. The thermodynamic state of the massif in the form of the tensor considered for Lagrangian coordinates. Estimation of the entropy increase for the massif element was investigated not only by changing its mechanical properties, but at the expense of occurrence in it of thermoelectric phenomena.

The results. It is proved that the velocity of processes in the rock massif associated with the entropy change is determined not only by its mechanical properties, but also depends on the thermoelectric phenomena. The hypothesis of ignition of methane-air mixture due to the piezoelectric effect, caused by deformation of the quartz grains under the action of external pressure, was further developed. It is shown that the shores of the cracks in the destroyed material pose a potential pole slip between micro-plasma discharges in the breakdown of hydrocarbon gas. Estimation of growth rate of cracks per unit volume of the rock massif was investigated. The ability to control this process by reducing the coefficient characterizing the accumulation of elastic energy in region of crack tip, was grounded. The physicochemical treatment of the coal seam proposed, which increases the critical value of stress intensity factor, greatly increasing the durability of the bottom-hole massif.

Scientific novelty. The qualitative dependence of specific growth rate concentration of cracks per unit volume from time to time established. It shows that it is possible to reduce the likelihood of exponential growth of cracks by reducing the coefficient characterizing the accumulation of elastic energy in region of crack tip.

The practical significance. The activities, which to be included in recommendations for the prevention of ignitions of methane-air mixture during the tunneling working and dredging of coal explosion and fire formation, is proposed.

Keywords: methane-air mixture, the gas-dynamic phenomena, microcracking, the piezoelectric effect, the formation of cracks.

References:

1.Zabigaylo, V.E., Lukinov, V.V. & Shirokov, A.Z. (1983). Vybrosoopasnost' gornykh porod Donbassa. Kiev: Naukova dumka.

2. Mineev, S.P. (2016). Prognoz i predotvrashchenie vybrosov uglya i gaza na shakhtakh Ukrainy. Mariupol': Skhidnyi vydavnychii dim.

3. Koptikov, V.P. , Bokiy, B.V. , Mineev, S.P. , Yuzhanin, I.A. & Nikiforov, A.V. (2016). Sovershenstvovanie sposobov i sredstv bezopasnoy razrabotki ugol'nykh plastov, sklonnykh k gazodinamicheskim yavleniyam. Donetsk: Promin'.

4. Zorin, A.N., Khalimendik, Yu.M. & Kolesnikov, V.G. (2001). Mekhanika razrusheniya gornogo massiva i ispol'zovanie ego energii pri dobyche poleznykh iskopaemykh. Moskva: OOO «Nedra-Biznestsentr».

5. Perekhov, I.M. & Lin'kov, A.M. (1978). Mekhanizm razvyazyvaniya i protekaniya vybrosov uglya (porody) i gaza. Osnovy teorii vnezapnykh vybrosov uglya, porody i gaza. Moskva: Nedra.

6. Sobolev, V.V. (2003). K voprosu o prirode obrazovaniya vybrosoopasnykh ugley. Sbornik nauchnykh trudov NGU, 1(17), 505-511.

7. Bulat, A.F., Skipochka, S.I., Palamarchuk, T.A. & Antsiferov, V.A. (2010). Metanogeneratsiya v ugol'nykh plastakh. Dnepropetrovsk: Lira LTD.

8. Malinnikova, O.N. (2011). Usloviya formirovaniya i metodologiya prognozirovaniya gazodinamicheskikh yavleniy pri tekhnogennom vozdeystvii na ugol'nye plasty. Moskva: URAN IPKON RAN.

9. Skritskiy, V.A., Surkov, A.V. & Sobolev, V.V. (2013). Prichiny zarozhdeniya i razvitiya gazodinamicheskikh yavleniy v ugol'nykh shakhtakh. Vestnik nauchnogo tsentra po bezopasnosti rabot v ugol'noy promyshlennosti, (2), 102-108.

10. Mineev, S.P. (2018). O preduprezhdenii avariy, svyazannykh so vzryvami metana v ugol'nykh shakhtakh. Ugol' Ukrainy, (1-2), 50-59.

11. Mineev, S.P. (2019). Voprosy likvidatsii nekotorykh avariy, svyazannykh so vzryvami metanovozdushnykh smesey i pozharov. Fiziko-tekhnicheskie problemy gornogo proizvodstva: Sbornik naukovikh prats', (21), 9-21.

12. Mineev, S.P. (2017). Vrag ili drug shakhtnyy metan? Eto reshayut lyudi. Okhorona pratsi: Dodatok do zhurnalu, (12), 49- 53.

13. Sobolev, V., Rudakov, D. & Stefanovych, L. (2017). Рhysical and mathematical modeling the conditions of coal and gas outbursts. Mining of Mineral Deposits, 11(3), 40-49.

14. Bulat, A.F., Sofiyskiy, K.K., Bokiy, V.V. i dr. (2016). Upravlenie aerologicheskimi i geomekhanicheskimi protsessami v ugol'nykh shakhtakh. Mariupol': Skhidnyi vydavnychyi dim.

15. Bulat, A.F. & Dyrda, V.I. (2013). Nekotorye problemy gazodinamicheskikh yavleniy v ugol'nom massive v kontekste nelineynoy neravnovesnoy termodinamiki. Geotekhnicheskaya mekhanika, (108), 3-31.

16. Botvenko, D.V., Kazantsev, V.G., Sazonov, M.S. & Vysotskiy, V.V. (2014). Eksperimental'nye issledovaniya p'yezoelektricheskogo effekta gornykh porod. Vestnik nauchnogo tsentra po bezopasnosti rabot v ugol'noy promyshlennosti, 16-22.

17. Bulat, A.F., Mineev, S.P., Smolanov, S.N., Belikov, I.B. & Samopalenko, P.M. (2018). Ob osobennostyakh upravleniya metanovydeleniem pri likvidatsii posledstviy vzryvov metanovozdushnoy smesi. Ugol' Ukrainy, (8), 29-34.

18. Podstrigach, Ya.S. & Povstenko, Yu.Z. (1985). Vvedenie v mekhaniku poverkhnostnykh yavleniy v deformiruemykh tverdykh telakh. Kiev: Naukova dumka.

19. Bogolyubov, I.N., Ermilov, A.I. & Kurbatov, A.M. (1988). Vvedenie v analiticheskiy apparat statisticheskoy mekhaniki. Kiev: Naukova dumka.

20. Petrov, N. & Brankov, I. (1986). Sovremennye problemy termodinamiki. Moskva: Mir.

21. Glansdorf, P. & Prigozhin, I. (1973). Termodinamicheskaya teoriya struktury, ustoychivost' v fluktuatsii. Moskva: Mir.

22. Bulat, A.F., Makeev, S.Yu., Osenniy, V.Ya. Andreev, S.Yu., Emel'yanenko, V.I., Loyk, V.I. & Ryzhov G.A. (2007). Vliyanie razlichnogo roda vozdeystviy na svoystva i sostoyanie gazonasyshchennogo ugleporodnogo massiva. Deformirovanie i razrushenie materialov s defektami i dinamicheskie yavleniya v gornykh porodakh i vyrabotkakh, Simferopol': Tavrich. nats. un-t., 52-56.

23. Mineev, S.P., Prusova, A.A. & Kornilov, M.G.  (2007). Aktivatsiya desorbtsii metana v ugol'nykh plastakh. Dnepropetrovsk: Veber.

24. Mirdel', G. (1972). Elektrofizika. Moskva: Mir.

25. Zheludev, I.S. (1987). Fizika kristallov i simmetriya. Moskva: Nauka.

26. Bulat, A.F., Makeiev, S.Yu., Andrieiev, S.Yu. & Ryzhov, H.O. Sposib poperedzhennia hazodynamichnykh yavyshch. Patent 88613 UA, MPK8 E21F 5/00, E21D 20/00.

27. Baranov, V.A. (2014). Mikrodeformatsii kvartsa karbonovykh peschanikov Donbassa. Vestnik PNIPU. Geologiya. Neftegazovoe i gornoe delo, (12), 75-86.

28. Mineev, S.P. (2009). Svoystva gazonasyshchennogo uglya. Dnepropetrovsk: NGU.

29. MacDonald A.D. (1966). Microwave Breakdown in Rages. New York - London - Sydney.

30. Dutton I. (1975). A survey of electron Swarm Data. I. Rhys and Ehem. Ret. 4(3).

31. Bulat, A.F., Makeev, S.Yu., Andreev, S.Yu. & Ryzhov G.A. (2011). Fenomenologicheskaya model' genezisa dinamicheskikh yavleniy v shakhtakh. Pidzemni katastrofy: modeli, prohnoz, zapobihannia. Dnipropetrovsk: NHU,11-16.

32. Bulat, A.F. Skipochka, S.I. & Usachenko B.M. (1998). Mekhanoelekticheskie effekty porod ugol'nykh formatsiy i ikh rol' v mekhanizme gazodinamicheskikh yavleniy. Dopovidi NAN Ukrainy. (1), 153-159.

33. Bulat, A.F., Makeev, S.Yu., Andreev, S.Yu., Ryzhov, G.A. & Filimonov P.E. (2011). Osobennosti protsessa treshchinoobrazovaniya v massive pri upravlenii ego gazodinamikoy. Geotekhnicheskaya mekhanika, (94), 24-30.

34. Bortnikov, P.B., Kuz'menko, A.P., Maynagashev, S.M. & Shmakov F.D. (2011). Sposob opredeleniya razmerov treshchiny v porodakh. Pat. 2410727 RU, MPK7 E21C 39/00.

35. Mineev, S.P., Rubinskiy, A.A., Vitushko, O.V., & Radchenko, A.V. (2010). Gornye raboty v slozhnykh usloviyakh na vybrosoopasnykh ugol'nykh plastakh. Donetsk: Skhidnyi vydavnychyi dim.

36. Pilipenko, Yu.M. (2011). Degazatsiya ugol'nykh plastov v zonakh tektonicheskikh narusheniy. Geolog Ukrainy, 2 (34), 69-73.

37. Botvenko, D.V. Kazantsev, V.G., Sazonov, M.S. & Vysotskiy V.V. (2014). O vozmozhnosti vosplameneniya metanovozdushnoy smesi ot p'yezoelektricheskogo effekta gornykh porod. Vestnik nauchnogo tsentra po bezopasnosti rabot v ugol'noy promyshlennosti, (1), 96-98.

38. Skipochka, S.I. (2002). Mekhanoelektricheskie effekty v porodakh i ikh ispol'zovanie v gornoy geofizike. Dnepropetrovsk: NGAU.

39. Voloshin, N.E. Grekov, S.P. & Pashkovskiy, P.S. (2010). Mekhanizm obrazovaniya ochagov samovozgoraniya uglya v kraevoy chasti ugol'nogo plasta. Ugol' Ukrainy, (10), 28-30.

40. Mineev, S.P., Kocherga, S.P., Dubovik, A.I., Losev, V.I. & Mishkan', M.A. (2016). Rassledovanie avarii s dvumya vzryvami metanovozdushnoy smesi. Ugol' Ukrainy, (9-10), 14-22.

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

489874
Today
This month
Total
62
9442
489874