№61-13
Determination of rheological analogy of lead and steel for flat hot-rolled products
V. Kukhar1, О. Kurpe1
1Pryazovskyi State Technical University, Mariupol, Ukraine
Coll.res.pap.nat.min.univ. 2020, 61:153-162
https://doi.org/10.33271/crpnmu/61.153
Full text (PDF)
ABSTRACT
Purpose. Search for conditions and steel grades of various purposes, including those produced by the method of thermomechanical rolling, which properties are similar to lead as a material-analogue, for its further implementation in physical modeling.
Research methods. In the paper, by upsetting, in laboratory conditions, the properties of lead samples have studied at a degree of deformation from 0.1 relative units to 0.54 relative units. According to the results of the experiment, the parameters of the samples have been determined, and the true strain resistance has been calculated. Comparative analysis of properties has been made and the list of steel grades (alloy) - analogues and conditions (deformation temperature 1200 ℃, deformation rates u = 1 c -1, deformation degree from 0.1 relative units to 0.54 relative units) under which they are close to the properties of lead has been determined.
Findings. The polynomial dependences of true strain resistance on the degree of deformation for lead, as well as for alloy 0X18MFT and steel grades - analogues 15X25T, DD11, 65G, X80, X70, St3sp, with corresponding magnitude of approximation probability from 0.992 to 0.998 have been obtained. The proportionality coefficients have been calculated by which the results of further experiments on rolling lead samples can be converted to the corresponding steel grade (alloy) - analogue.
Scientific originality. Expansion of possibilities for physical modeling has been performed within the temperature range from 1200 ℃ to 1000 ℃, which corresponds to most modes of processing of modern steel grades during roughing rolling, by introducing the coefficient of change of the true deformation resistance Kσ and developing dependences for calculation for each steel grade (alloy) - analogue.
Practical implications. The verification of the obtained results has been performed based on the actual data of the thick plates roughing rolling results on the mill 3600 AZOVSTAL IRON & STEEL WORKS with final dimensions of 17.5×3268×12200 mm of steel grade X70. When comparing the actual data with the data calculated on the basis of the obtained proportionality coefficients and the coefficients of change of the true deformation resistance, the average error is 11.6 %, which allows to use the obtained data for further physical modeling of hot rolling processes.
Keywords: physical modeling, proportionality coefficients, true strain resistance, hot rolling, steel grades.
References:
-
Kim, J., Lee, J., & Hwang, S. M. (2009). An analytical model for the prediction of strip temperatures in hot strip rolling. International Journal of Heat and Mass Transfer, 52(7–8), 1864–1874.
https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.013 -
Kurpe, O., Kukhar, V., Klimov, E., & Chernenko, S. (2020). Improvement of Process Parameters Calculation for Coil Rolling at the Steckel Mill. Materials Science Forum, 989, 609–614
https://doi.org/10.4028/www.scientific.net/MSF.989.609 - Курпе, О.Г., Кухар, В.В. (2018). Розширення сортаменту листового прокату в умовах металургійного заводу в Італії. Вчені записки Таврійського національного університету імені В.І. Вернадського.Технічні науки,29 (68)(3), 121–126.
-
Kurpe, O., & Kukhar, V. (2019). Development and Optimization of Flat Products Manufacturing at Rolling Mill 3200. Materials Science Forum, 946, 794–799.
https://doi.org/10.4028/www.scientific.net/MSF.946.794 -
Xu, Y., Yu, Y., Liu, X., & Wang, G. (2008). Modeling of microstructure evolution and mechanical properties during hot-strip rolling of Nb steels. Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng Ed), 15(4), 396–401.
https://doi.org/10.1016/S1005-8850(08)60075-4 -
Schausberger, F., Steinboeck, A., Kugi, A.(2015).Mathematical modeling of the contour evolution of heavy plates in hot rolling. Applied Mathematical Modelling,Vol.39,4534–4547.
https://doi.org/10.1016/j.apm.2015.01.017 -
Pan, Q. K., Chen, Q. da, Meng, T., Wang, B., & Gao, L. (2017). A mathematical model and two-stage heuristic for hot rolling scheduling in compact strip production. Applied Mathematical Modelling, 48, 516–533.
https://doi.org/10.1016/j.apm.2017.03.067 -
Rudkins, N., & Evans, P. (1998). Mathematical modelling of mill set-up in hot strip rolling of high strength steels. Journal of Materials Processing Technology, 80–81, 320–324.
https://doi.org/10.1016/S0924-0136(98)00190-3 -
Ettl, A., Prinz, K., Mueller, M., Steinboeck, A., & Kugi, A. (2018). Mathematical Model and Stability Analysis of the Lateral Plate Motion in a Reversing Rolling Mill Stand. IFAC-PapersOnLine, 51(2), 73–78.
https://doi.org/10.1016/j.ifacol.2018.03.013 -
Phaniraj, M. P., Behera, B. B., & Lahiri, A. K. (2005). Thermo-mechanical modeling of two phase rolling and microstructure evolution in the hot strip mill: Part I. Prediction of rolling loads and finish rolling temperature. Journal of Materials Processing Technology, 170(1–2), 323–335.
https://doi.org/10.1016/j.jmatprotec.2005.05.009 -
Hinton, J., & Beynon, J. (2008). A laboratory Steckel mill simulation. Steel Research International, 79, 277–286.
https://doi.org/10.1002/srin.200806352 -
Chastukhin, A., Ringinen, D., Khadeev, G., & Efron, L. (2013). Effect of Reheating on Grain Size Evolution in High Strength Linepipe Steel. Materials Science Forum, 753, 449–452.
https://doi.org/10.4028/www.scientific.net/MSF.753.449 -
Lenard, J. G. (2007). Mathematical and Physical Modelling of the Flat Rolling Process. In Primer on Flat Rolling (pp. 36–98). Elsevier Science Ltd.
https://doi.org/10.1016/B978-008045319-4/50005-X - Polukhin, P.I, Gun, G.Ya., & Galkin, A.M. (1976). Soprotivlenie plasticheskoy deformatsii metallov i splavov: spravochnik. Metallurgiya.
- Konovalov, Yu.V., Ostapenko, A.L., & Ponomarev, V.I. (1986). Raschet parametrov listovoy prokatki. Spravochnik. Metallurgiya.
- Kaplanov, V.I., & Kurpe, A.G. (2009). Usovershenstvovannaya zavisimost' dlya opredeleniya plasticheskikh svoystv stali kategorii prochnosti Kh70. Universitetskaya nauka – 2009, tez. dokl. Mezhdunar. nauch.-tekhn. konf., 156–157.
- Kaplanov, V. I., Volodarskiy, V. V., Kurpe, A. G., Nosochenko, A. O., Sagirov, R. I., Ganoshenko, I. V., & Matrosov, Yu. I. (2007). Issledovanie prochnostnykh svoystv stali kategorii prochnosti Kh70 i Kh80. Proizvodstvo prokata, (2), 7-10.
- Starchenko, D.I. (1994). Dinamika prodol'noy prokatki. Uchebnoe posobie. ISIO.