№62-11

Kinetics of the process of oxidation of carbon monoxide on a zeolite-based manganese oxide catalyst

O. Ivanenko1, A. Trypolskyi2, M. Gomelya1, V. Radovenchik1, T. Overchenko1

1 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

2 L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy ofSciences of Ukraine, Kyiv, Ukraine

Coll.res.pap.nat.min.univ. 2020, 62:126-138

https://doi.org/10.33271/crpnmu/62.126

Full text (PDF)

ABSTRACT

Purpose. Investigation of the kinetics of the process of catalytic oxidation of carbon monoxide with atmospheric oxygen and determination of its limiting stage.

The methods. An experimental study of the oxidation reaction of carbon monoxide using metal oxide catalysts with molecular oxygen was carried out in a created flow-through unit at atmospheric pressure. The catalytic activity of the samples in the oxidation of carbon monoxide was characterized by the conversion of CO to CO2 and the specific rate of the reaction.

Findings. It was found that when carbon monoxide is oxidized by molecular oxygen at atmospheric pressure in the temperature range 200-500 °C, the kinetics of the oxidation process is described by a first-order equation, and the reaction on a manganese oxide catalyst proceeds in an intra-diffusion mode. The kinetic parameters of the process, the effective and true rate constants, activation energies and overexposure factor have been calculated, which can be used for further calculation of the catalytic reactor. It was shown that the transport of carbon monoxide molecules inside the catalyst granules proceeds in the Knudsen mode, and the reaction is not limited by the diffusion of carbon monoxide from the gas flow to the outer surface of the catalyst.

The originality. It consists in obtaining a kinetic description of the catalytic oxidation of carbon monoxide with atmospheric oxygen on a manganese oxide catalyst based on zeolite.

Practical implication. Calculated kinetic parameters of the specified process make it possible to calculate the catalytic reactor for oxidation of CO. The above technical solution will create conditions for the transfer of the obtained technology to environmentally hazardous critical infrastructure facilities, for example, metallurgical enterprises.

Keywords: carbon monoxide, catalyst, oxidation, manganese dioxide, zeolite, clinoptilolite, kinetics.

References:

  1. Petrov, A. Yu., & Sinitsin, S. A. (2014).  Kataliticheskaya detoksikatsiya dymovykh gazov v neftepererabatyvayushchey promyshlennosti. Tekhnologiya nefti i gaza, 2(91), 18–23.
  2. Karvatskii, A., Lazariev, T., Leleka, S., Mikulionok, I., & Ivanenko, O. (2020). Determination of parameters of the carbon-containing materials gasification processin the rotary kiln cooler drum. Eastern-European Journal of EnterpriseTechnologies, 4/8(106), 65–76.
    http://doi.org/10.15587/1729-4061.2020.210767.
  3. Leleka, S. V., Panov, Є. M., Karvats'kiy, A. Ya., Vasil'chenko, G. M., Mіkul'onok, І. O., Borshchik, S. O., & Vagіn, A. V. (2020). Rozrobka energoefektivnikh ta ekologіchno bezpechnikh futerіvok і teploіzolyatsії pechey elektrodnogo virobnitstva. Energotekhnologii i resursosberezhenie, (3), 21–34.
    https://doi.org/10.33070/etars.3.2020.02
  4. Kursov, S. V. (2015). Monooksid ugleroda: fiziologicheskoe znachenie i toksikologiya. Meditsina neotlozhnykh sostoyaniy, 6(69), 9–16.
  5. Parmon, V. N. (2000). Kataliticheskie tekhnologii budushchego dlya vozobnovlyaemoy i netraditsionnoy energetiki. Khimiya v interesakh ustoychivogo razvitiya, 8(4), 555–565.
  6. Patel, D. M., Kodgire, P., & Dwivedi, A. H. (2020). Low temperature oxidation of carbon monoxide for heat recuperation: A green approach for energy production and a catalytic review. Journal of Cleaner Production245, 118838.
    http://doi.org/10.1016/j.jclepro.2019.118838
  7. Nishihata, Y., Mizuki, J., Akao, T.,Tanaka, H.,Uenishi, M., Kimura, M., Okamoto, T., & Hamada, N. (2002). Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature. (418). 164–167.
    https://doi.org/10.1038/nature00893
  8. Schubert, M. M., Hackenberg, S., Van Veen, A. C., Muhler, M., Plzak, V., &Behm, J. (2001). CO oxidation over supported gold catalysts – “Inert” and “active” support materials and their role for the oxygen supply during reaction.Journal of Catalysis, (1). 113–122.
    https://doi.org/10.1006/jcat.2000.3069
  9. Panov, Ye., Gomelia, N., Ivanenko, O., Vahin, A., &Leleka, S. (2019). Estimation of the еffect of temperature, the concentration of oxygen and catalysts on the oxidation of the thermoanthracite carbon material. Eastern-European Journal of Enterprise Technologies, 2/6(98),43–50.
    https://doi.org/10.15587/1729-4061.2019.162474
  10. Choi, K.-H., Lee, D.-H., Kim, H.-S., Yoon, Y.-C., Park, C.-S., &Kim, Y. H. (2016). Reaction Characteristics of Precious-Metal-Free Ternary Mn–Cu–M (M=Ce, Co, Cr, and Fe) Oxide Catalysts for Low-Temperature CO Oxidation. Industrial & Engineering Chemistry Research, 55(16), 4443–4450.
    https://doi.org/10.1021/acs.iecr.5b04985
  11. Rakitskaya, T. L., Kiose, T. A., Vasylechko, V. O., Volkova, V. Ya.,& Gryshchouk, G. V. (2011). Adsorption-desorption properties of clinoptilolites and the catalytic activity of surface Cu(II)–Pd(II) complexes in the reaction of carbon monoxide oxidation with oxygen. Chemistry of metals and alloys, 4(3–4), 213–218.
    https://doi.org/10.30970/cma4.0186
  12. Korablev, V. V, Chechevichkin, A. V, Boricheva, I. K., & Samonin, V. V. (2017). Structure and morphological properties of clinoptilolite modified by manganese dioxide. St. Petersburg Polytechnical University Journal: Physics and Mathematics, 3(1), 63–70.
    https://doi.org/https://doi.org/10.1016/j.spjpm.2017.03.001
  13. Borshch, V. N., Pugacheva, E. V., & Zhuk, S. Ya. (2008). Mnogokomponentnye metallicheskie katalizatory glubokogo okisleniya SO i uglevodorodov. Doklady Akademii Nauk, 419 (6), 775–777.
  14. Golodet͡s, G. I. (1983). Heterogeneous catalytic reactions involving molecular oxygen.
    https://doi.org/10.1002/bbpc.19840880523
  15. Krylov, O. V. (1976). Kataliz nemetallami. Khimiya.
  16. Zaki,M. I.,Hasan,M. A.,Pasupulety,L.,&Kumari,K.(1997). Thermochemistry of manganese oxides in reactive gas atmospheres: Probing redox compositions in the decomposition course MnO2→MnO. Thermochimica Acta,(2), 171–181.
    https://doi.org/10.1016/S0040-6031(97)00258-X.
  17. Han,Y. F.,Chen,F.,Zhong,Z.,Ramesh,K.,Chen,L.,&Widjaja,E.(2006). Controlled Synthesis, Characterization, and Catalytic Properties of Mn2O3 and Mn3O4 Nanoparticles Supported on Mesoporous Silica SBA-15.Journal of Physical Chemistry B,110 (48), 24450-24456.
    https://doi.org/10.1021/jp064941v
  18. Iablokov, V., Frey, K., Geszti, O.,& Kruse, N. (2010). High Catalytic Activity in CO Oxidation over MnOx Nanocrystals. Catalysis Letters, 134(3-4), 210-216.
    https://doi.org/10.1007/s10562-009-0244-0
  19. Ramesh, K., Chen, L., Chen, F., Liu, Y., Wang, Z.,& Han, Y. (2008). Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts. Catalysis Today, 131(1-4), 477-482.
    https://doi.org/10.1016/j.cattod.2007.10.061.
  20. Wang,L.-C.,Liu,Q.,Huang,X.-S.,Liu,Y.-M.,Cao,Y.,& Fan,K.-N.(2009).Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation. Applied CatalysisB: Environmental,88(1-2), 204-212.
    https://doi.org/10.1016/j.apcatb.2008.09.031.
  21. Stobbe, E. R., De Boer, B. A., &Geus, J. W. (1999). The reduction and oxidation behaviour of manganese oxides. Catalysis Today, 47(1-4), 161-167.
    https://doi.org/10.1016/S0920-5861(98)00296-X.
  22. Boreskov, G. K. (1988). Geterogennyy kataliz. Nauka.
  23. Centi, G., Arena, G. E., & Perathoner, S. (2003). Nanostructured catalysts for NOx storage-reduction and N2O decomposition. Journal of Catalysis, (216), 443–454.
    https://doi.org/10.1016/S0021-9517(02)00072-6
  24. Wang K., &Zhong P. A. (2010). Kinetic study of Co oxidation over the perovskite-like oxide LaSrNiО4.Journal of the Serbian Chemical Society, (2),249–258.
    https://doi.org/10.2298/JSC1002249W.
  25. Savel'yev, I. V. (1970). Kurs obshchey fiziki. Tom 1. Mekhanika, kolebaniya i volny, molekulyarnaya fizika. Izdanie 4-e, pererabotannoe. Izdatel'stvo «Nauka».
  26. Mikulonok, I. O. (2014). Mekhanichni, hidromekhanichni i masoobminni protsesy ta obladnannia khimichnoi tekhnolohii. NTUU «KPI».

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

489866
Today
This month
Total
54
9434
489866