№64-07

Methods for studying the parameters of the formation of a backfilling mass of open pit cavities from metallurgical slags

O. Filonenko1, M. Petlovanyi2

1Metinvest Holding LLC, Mariupol, Ukraine

2Dnipro University of Technology, Dnipro, Ukraine

Coll.res.pap.nat.min.univ. 2021, 64:81-98

https://doi.org/10.33271/crpnmu/64.081

Full text (PDF)

ABSTRACT

Purpose. Development of a methodological algorithm for performing analytical and experimental studies to substantiate rational parameters for the formation of a filling mass from metallurgical slags in worked-out opencast cavities.

Methodology. The use of the physical modeling method to study the degree of permeability of atmospheric precipitation into the filling massif and determine its key physical properties, considering the criteria for the similarity of nature and the model, was proposed and substantiated. The use of numerical modeling by the finite element method for predicting deformations of the filling mass and achieving its stable state has been substantiated.

Results.Theoretical aspects of the order of formation of a stable filling mass for various types of metallurgical slags under the action of a load, the layers of which are characterized by different physical properties, are presented. To form the height of the bottom sealed filling layer from steel-making slag in conditions of the degree of permeability of atmospheric precipitation and the formation of filtrate it is proposed. The characteristics of the physical model of the filling mass and the maximum amount of precipitation, which will affect its surface, have been determined. The key physical properties of the main layers of the backfill massif (voidness, bulk density, compaction coefficient) and methods of their determination for the formation of its stable state are highlighted. The features of the numerical modeling of the deformations of the filling mass based on the Drucker-Prager strength model for bulk materials in the SolidWorks software package have been determined.

Original. The scientific and methodological foundations for the formation of a safe and stable filling array of opencast cavities based on metallurgical slags have been created.

Practical implication. A methodological algorithm has been developed that makes it possible to determine the parameters of the formation of a filling mass with the subsequent restoration of natural landscapes and to dispose of significant volumes of safe industrial waste in quarry cavities.

Keywords: steelmaking slag, blast furnace slag, filling material, recultivation, particle size distribution, physical modeling.

References:

  1. Pivniak, H.H., Humenyk, I.L., Drebenshtedt, K., & Panasenko, A.I. (2011). Naukovi osnovy ratsionalnoho pryrodokorystuvannia pry vidkrytii rozrobtsi rodovyshch. Dnipropetrovsk, Ukraina: Natsionalnyi hirnychyi universytet.
  2. Lozhnikov, O.V., & Romanchenko, Yu.V. (2014). Rozrobka tekhnolohii hirnychotekhnichnoi rekultyvatsii obvodnenykh zalyshkovykh vyroblenykh prostoriv kar’ieriv. Heotekhnichna mekhanika, (14), 34-42.
  3. Litvinov, Yu.I. (2018). Tekhnolohichni zasady rozkryttia ta rozrobky horyzontalnykh kar’iernykh poliv pry obmezhenomu porushenni pryrodnykh resursiv. Dysertatsiia na zdobuttia naukovoho stupenia kandydata tekhnichnykh nauk (doktora filosofii) za spetsialnistiu 05.15.03 «Vidkryta rozrobka rodovyshch korysnykh kopalyn». Dnipro, Ukraina: NTU «Dniprovska politekhnika», Ministerstvo osvity i nauky.
  4. Fedoniuk, V.V., Volianskyi, V.O., & Fedoniuk, M.A. (2016). Porivnialnyi ekonomichnyi analiz provedennia rekultyvatsii riznykh vydiv na porushenykh zemliakh. Aktualni problemy ekonomiky, (9), 203-212.
  5. Melnyk, O.H. (2020). Some aspects of soil`s legal protection: conservation and reclamation in Ukraine and the EU. Juridical Scientific and Electronic Journal, (3), 188-190.
    https://doi.org/10.32782/2524-0374/2020-3/45
  6. Sobko, B.Yu., Lozhnikov, O.V., & Romanchenko, Yu.V. (2015). Obgruntuvannia parametriv tekhnolohichnykh skhem hirnychotekhnichnoi rekultyvatsii obvodnenykh zalyshkovykh vyroblenykh prostoriv kar’ieriv. Zbirnyk naukovykh prats NHU, (48), 88-95.
  7. Lyashenko, V.I., Dudchenko, A.Kh., & Tkachenko, A.A. (2008). Nauchno-tekhnicheskie osnovy prirodookhrannykh tekhnologiy podzemnoy razrabotki uranovykh mestorozhdeniy. Ekolohiia dovkillia ta bezpeka zhyttiediialnosti, (4), 34-42.
  8. Kuzmenko, O., & Petlovanyi, M. (2015). Substantiation the expediency of fine gridding of cementing material during backfill works. Mining of Mineral Deposits, 9(2), 183-190.
    https://doi.org/10.15407/mining09.02.183
  9. Zvit z otsinky vplyvu na dovkillia DP SkhidHZK. Smolinska shakhta. Rekultyvatsiia kar’ieru pisku. (2019). Zhovti Vody, Ukraina: UkrNDPRI, 132 s.
  10. Kozlovskiy, A.A., & Khomenko, N.N. (2010). Ispol'zovanie vyrabotannogo prostranstva kar'yera v kachestve poligona dlya skladirovaniya promyshlennykh otkhodov. Gornyy informatsionno-analiticheskiy byulleten', (9), 285-288.
  11. Akhmed'yanov, I.Kh., Krasavin, V.P., Danilov, O.N., Grigor'yev, V.V., & Kalmykov, V.N. (2014). Gornotekhnicheskaya rekul'tivatsiya uchalinskogo kar'yera s ispol'zovaniem obezvozhennykh khvostov obogashcheniya. Gornyy zhurnal, (7), 24-29.
  12. Spil'nik, N.V., & Shcherbak, S.A. (2013). Ispol'zovanie granulirovannykh shlakov ot proizvodstva silikomargantsa pri izgotovlenii stroitel'nykh materialov. Visnyk Kremenchutskoho natsionalnoho universytetu imeni Mykhaila Ostrohradskoho, (3), 175-179.
  13. Petlovanyi, M, & Filonenko, O. (2019). Problematic aspects and ways to increase the level of metallurgical slags disposal. In International Scientific Conference Scientific Development of New Eastern Europe: Conference Proceedings (pp. 55-60). Riga, Latvia: Baltija Publishing.
    https://doi.org/10.30525/978-9934-588-13-6-17
  14. Proctor, D.M., Shay, E.C., Fehling, K.A., & Finley, B.L. (2002). Assessment of human health and ecological risks posed by the uses of steel-industry slags in the environment. Human and Ecological Risk Assessment: An International Journal, 8(4), 681-711.
    https://doi.org/10.1080/20028091057150
  15. Bryzgalov, S.V. (2009). Snizhenie negativnogo vozdeystviya domennykh shlakov pri ikh utilizatsii na ob''ekty gidrosfery. Dissertatsiya na soiskanie nauchnoy stepeni kandidata tekhnicheskikh nauk po spetsial'nosti VAK RF 03.00.16 – «Ekologiya». Perm', Rossiya: Permskiy gosudarstvennyy tekhnicheskiy universitet.
  16. TU U 08.1-00191158-002:2020. (2020). Sumishi zakladni iz metalurhiinykh shlakiv PRAT«MK «Azovstal» ta PRAT «MMK im. Illicha» dlia tekhnichnoi rekultyvatsii tekhnohenno porushenykh zemel.
  17. Petlevanyy, M.V., Kuz'menko, A.M., Say, E.S., & Filonenko, A.V. (2019). Vzaimosvyaz' tekhnologicheskikh parametrov formirovaniya zakladochnogo massiva s ego kachestvennymi kharakteristikami. Fiziko-tekhnicheskie problemy gornogo proizvodstva, (21), 91-105.
  18. Bakhaeva, S.P., Tur, K.A., & Ilyushkin, V.D. (2020). Geomekhanicheskoe obosnovanie ustoychivosti otvala pri sovmestnom skladirovanii vskryshnykh peschano-glinistykh porod i otkhodov obogashcheniya. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta, (4), 49-59.
  19. Fedorova, E.A. (2011). Modelirovanie deformatsiy otvalov, nagruzhennykh shagayushchim ekskavatorom pri podrezke otkosov. Vestnik ChitGU, (2), 112-116.
  20. Balovnev, V.I. (2014). Podobie i modelirovanie v sisteme proektirovaniya dorozhno-stroitel'nykh mashin. Moskva, Rossiya: MADI, 148 s.
  21. Kosenko, A.V., & Tarasiutin, V.M. (2018). Doslidzhennia tekhnolohichnoho protsesu vypusku rudy na osnovi fizychnoho modeliuvannia. Vcheni zapysky Tavriiskoho natsionalnoho universytetu imeni V.I. Vernadskoho: Seriia «Tekhnichni nauky», 29(68), 73-79.
  22. Ukrainskyi hidrometeorolohichnyi tsentr. (2020).
    https://meteo.gov.ua/
  23. Metodicheskie ukazaniya po proektirovaniyu rekul'tivatsii narushennykh zemel' nadeystvuyushchikh proektiruemykh predpriyatiyakh Minugleproma SSSR. (1988). – Perm', Rossiya: VNIIOSugol', 292 s.
  24. Shashenko, O.M., Hapieiev, S.M., Shapoval, V.G., & Khalymendyk, O.V. (2019). Analysis of calculation models while solving geomechanical problems in elastic approach. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 28-36
    https://doi.org/10.29202/nvngu/2019-1/21
  25. Bondarenko, V., Symanovych, H., Barabash, M., Husiev, O., & Salieiev, I. (2020). Determining patterns of the geomechanical factors influence on the fastening system loading in the preparatory mine workings. Mining of Mineral Deposits, 14(1), 44-50.
    https://doi.org/10.33271/mining14.01.044
  26. Petlovanyi, M., Lozynskyi, V., Saik, P., & Sai, K. (2019). Predicting the producing well stability in the place of its curving at the underground coal seams gasification. E3S Web of Conferences, (123), 01019.
    https://doi.org/10.1051/e3sconf/201912301019
  27. Shustov, O.O., Petlovanyi, M.V., Zubko, S.A., & Sherstiuk, Ye.A. (2019). Heomekhanichni problemy stiikosti pryrodno-tekhnohennykh masyviv rudnykh rodovyshch. Zbirnyk naukovykh prats Natsionalnoho hirnychoho universytetu, (58), 154-165.
  28. Rakishev, B.R., Shashenko, A.N., Moldabaev, S.K., Kovrov, A.S., Seituly, K. (2013). Chislennoe modelirovanie geomekhanicheskikh protsessov vo vnutrennikh otvalakh na naklonnom osnovanii. Promyshlennost' Kazakhstana, 80(№5), 79-82.

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

477199
Today
This month
Total
154
6837
477199