№68-05

Justification of environmentally safe water levelin “Novohrodivska 2” minefor protectingadjacent areasfrom flooding

D. Rudakov1, I. Sadovenko1, О. Inkin1, N. Dereviahina1

Dnipro University of Technology,Dnipro, Ukraine

Coll.res.pap.nat.min.univ. 2022, 68:58-66

https://doi.org/10.33271/crpnmu/68.058

Full text (PDF)

ABSTRACT

Purpose. Predictive estimation of changes in hydrodynamic conditions of “Novohrodivska 2” mine during its closure and operation of geothermal systems with evaluation of a required capacity of drainage systems capable to prevent flooding in the areas adjacent to the mine.

Methods. The total mine water inflow was calculated using the analytical relations of geofiltration and empirical dependencies while considering the rate of mine water level increase during the previous stages of flooding and hydrodynamic connections with mine workings of a neighboring mine named after D.S. Korotchenko and “Novohrodivska 1-3” mine as well as the volume of mined out space and existing geological and structural tectonic faults.

Findings. The total water inflow to the “Novohrodivska 2” mine calculated according to different approaches varies in a range of 2000–2200 m3/day depending on the inflow from neighboring mines, infiltration withing the range of 30 to 50 mm/year and the inflow from the upper aquifer. This inflow should be completely pumped out by drainage systems and discharged into the hydrographic network beyond the mine catchment area in order to maintain the hydrodynamically and environmentally safe level of +185 m during mine closure and the operation of geothermal systems.

Originality. The suggested new comprehensive approach to evaluate the total inflow during mine closure allows adequate consideration of hydrodynamic conditions in this area, geological and hydrogeological structure and the impact of various natural and technogenic factors.

Practical significance. The data obtained during the calculations of water inflow to the “Novohrodivska 2” mine will be used in estimation of a required capacity of drainage systems, which allow prevention of flooding and avoiding adverse physical and geological phenomena in the areas adjacent to the mine. In addition, the calculated values of water inflow are expected to be used in determining technological and economic indicators of geothermal systems.

Keywords: flooded mine, water inflow, mine water, safe level, flooding.

References

  1.  Finkel'shteyn, Z. L., Kuchin, I. N., & Boyko, N. Z. (2004). O vozmozhnosti ispol'zovaniya podzemnykh shakhtnykh vod dlya promyshlennykh, sel'skokhozyaystvennykh i bytovykh tseley.Visnyk Sumskoho derzhavnoho unyversytetu,2,195–198.
  2. Gavrilenko, Yu. N., & Ermakova, V. N. (2004). Tekhnogennye posledstviya zakrytiya ugol'nykh shakht Ukrainy: monografiya.Nord-press.
  3. LANUV, N. (2018). Landesamt für Natur, Umwelt, und Verbraucherschutz nordrhein-westfahlen: Potenzialstudie warmes Grubenwasser–Fachbericht 90. Recklinghausen, Germany.
  4. Banks, D., Athresh, A., Al-Habaibeh, A., & Burnside N. (2019). Water from abandoned mines as a heat source: practical experiences of open- and closed-loop strategies, United Kingdom. Sustainable Water Resources Management, 5. 29–50.
    https://doi.org/10.1007/s40899-017-0094-7
  5. Loredo, C., Roqueñí, N., & Ordóñez A. (2016). Modelling flow and heat transfer in flooded mines for geothermal energy use: A review. Int J of Coal Geology, 164, 115–122.
    https://doi.org/10.1016/j.coal.2016.04.013
  6. Burnside,N.M., Banks,D., Boyce,A.J. (2016). Sustainability of thermal energy production at the flooded mine workings of the former Caphouse Colliery, Yorkshire, United Kingdom. Int J Coal Geol, 164,85–91.
  7. Rudakov, D., Inkin, O., Dereviahina, N., & Sotskov, V. (2020). Effectiveness evaluation for geothermal heat recovery in closed mines of Donbas. E3S Web of Conferences 201, 01008 Ukrainian School of Mining Engineering, 1–10.
    https://doi.org/10.1051/e3sconf/202020101008
  8. Sadovenko, I., Inkin, O., Dereviahina, N., & Khryplyvets, Y. (2019). Actualization of prospects of thermal usage of groundwater of mines during liquidation. E3S Web of Conferences 123, 01046.
    https://doi.org/10.1051/e3sconf/201912301046
  9. Zaklyuchenie rezul'tatakh raboty«Prognoz izmeneniya ekologo-gidrogeologicheskikh usloviy posle polnoy likvidatsii shakhty № 2 «Novogrodovskaya».(2015). Artyomovskaya GGP.
  10. Pitalenko, E. I., Artemenko, P. G., Pedchenko, S. V., & Yagmur A. B. (2007). Vremya zatopleniya shakht: prognoz i fakt. Naukovi pratsi UkrNDMI NAN Ukrainy,1, 165–172.
  11. D'yachenko, N. A., Shevchenko, E. N., & Kuchuk, V. F. (2012). Gidrodinamika zatopleniya ugol'nykh shakht v usloviyakh deformatsionnogo rezhima sdvigovoy zony. Naukovi pratsi UkrNDMI NAN Ukrainy, 10,192–218.
  12. Usenko, V. V., & Lisyanskaya, L. A. (2000). Zaklyuchenie o rezul'tatakh raboty «Razrabotka prognoza geofil'tratsii i upravleniya podzemnymi vodami v gornom massive na pole shakhty № 2 «Novogrodovskaya» GKhK «Selidovugol'» i granichnykh shakht pri ee likvidatsii». Artyomovskaya GGP.
  13. Hidroheolohichnyi prohnoz pro mozhlyvyi prytok shakhtnykh vod ta zahrozu proryvu vody do VP «Shakhta 1-3 «Novohrodivska» DP «Selydvuhillia» z zakrytoi shakhty № 2 «Novohrodivska». (2018). DRGP«Donetskgeology».
  14. Ulytskyi, O. A., Yermakov, V. M., Lunova, O. V., & Boiko, K. Ye. (2019). Do pytannia otsinky prohnozu zmin hidroheolohichnykh umov tekhnoekosystem Selydivskoi hrupy shakht. Ekolohichna bezpeka ta pryrodokorystuvannia, 4 (32), 32–42.
  15. Al'tovskiy, M. E. (1962). Spravochnik gidrogeologa. Gosgeoltekhizdat.
  16. Ber, Ya., Zaslavski, D., & Irmey S. (1971). Fiziko-matematicheskie osnovy fil'tratsii vody. Mir.

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

477201
Today
This month
Total
156
6839
477201