№69-04

Numerical simulation of the line of least resistanceduring the explosion of charges

M. Kononenko1, O. Khomenko1, A. Kosenko2

1 Dnipro University of Technology, Dnipro, Ukraine

2 Department of Physics of the Mining Processes of Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine, Dnipro, Ukraine

Coll.res.pap.nat.min.univ. 2022, 69:43-57

https://doi.org/10.33271/crpnmu/69.043

Full text (PDF)

ABSTRACT

Purpose. To establish the analytical regularity of the calculation of the maximum value of the line of least resistance (LLR) of the explosive (E), taking into account the physical and mechanical properties of the rock mass and the detonation characteristics of the explosive.

The methodology of research. Numerical modeling by the finite element method (FEM) to change the stress-strain state of the model established the value of the LLR at different diameters of the charge cavity, the pressure of explosion products and the tensile strength of rocks. Regression analysis obtained an empirical pattern of changes in the LLR depending on the physical and mechanical properties of the rock mass and the detonation characteristics of explosives. Mathematical modeling establishes analytical regularities of LLR calculation for zones of crack formation and intensive fragmentation.

Findings. According to the change in the stress state of the model material around the charging cavity, the empirical regularity of changing the maximum value of the LLR depending on the diameter of the charging cavity and the diameter of the explosive charge, the density and rate of detonation of explosives, the compressive and shear strength. According to the developed calculation scheme, analytical regularities of LLR calculation for zones of crack formation and intensive fragmentation are obtained. By comparing the results of LLR calculation according to the obtained regularities, the most correct formula for LLR calculation was chosen, which turned out to be the analytical regularity of LLR calculation for the zone of intensive fragmentation.

The originality. The power law is established for determining the LLR of an E, which comprehensively takes into account the radius of the crush zone, the diameter of the charging cavity and charge, the density and detonation velocity of E, the compressive strength of rocks, their fracturing and compaction under the action of rock pressure, which makes it possible to calculate the parameters of drilling and blasting (D&B) for breaking massif along the zone of intensive fragmentation.

Practical implications. According to the results of the research, an analytical regularity of the calculation of the LLR of the explosive charge in the zone of intensive fragmentation was obtained, the use of which will allow to rationalize the D&B parameters in ore mining with the help of industrial explosives.

Keywords: explosive, charging cavity, stress-strain state, zone of intensive fragmentation, line of least resistance

References

1. Vilkul, Yu.G., Storchak, S.A., Yaremenko, V.I., & Kravtsov, N.K. (2011). Ratsionalnaya razrabotka i obogashchenie zhelezorudnogo syrya Krivorozhskogo basseyna. Kachestvo mineralnogo syrya, 20-25.

2. Kovalenko, I.L., Stupnik, N.I., Korolenko, M.K., Poltorashchenko, S.P., Karapa, I.A., Kiyashchenko, D.V., & Nebogin, V.Z. (2016). Osobennosti tekhnologii formirovaniya skvazhinnykh zaryadov emulsionnymi VV Ukrainit v podzemnykh usloviyakh. Visnyk Kryvorizkoho tekhnichnoho universytetu, (41), 3-6.

3. Tkachuk, K.N., & Fedorenko, P.I. (1990). Vzryvnye raboty v gornorudnoy promyshlennosti. Vyshcha shkola.

4. Taraiutin, V.M., & Kosenko, A.V. (2018). Obgruntuvannia resursozberihaiuchykh tekhnolohichnykh protsesiv pry pidzemnomu vydobutku riznosortnykh zaliznykh rud Kryvbasu. Visnyk Kryvorizkoho tekhnichnoho universytetu, (46), 152–159.

5. Tarasyutin, V.M. (2015). Geotechnology features of high quality martite ore from deep mines of Kryvyi Rih basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 54–60.

6. Rodionov, V.N., Adushkin, V.V., Kostyuchenko, V.N., Nikolaevskiy, V.N., Romashov, A.N., & Tsvetkov, V.M. (1971). Mekhanicheskiy effekt podzemnogo vzryva. Nedra.

7. Baum, F.A., Orlenko, L.P., & Stanyukovich, K.P. (1975). Fizika vzryva. Nauka.

8. Noskov, V.F. Kamashchenko, V.I., & Zhabin, N.I. (1982). Burovzryvnye raboty na otkrytykh i podzemnykh razrabotkakh. Nedra.

9. Sadovskiy, M.A. (2004). Izbrannye trudy. Geofizika i fizika vzryva..

10. Adushkin, V.V., & Spivak, A.A. (2007). Podzemnye vzryvy. Nauka.

11. Kudryavtsev, M.I., & Gaydukov, V.S. (2011). K voprosu o putyakh snizheniya vykhoda negabaritnykh fraktsiy obrushennoy rudy pri podzemnoy razrabotke bogatykh rud Krivbassa. In Stalyi rozvytok hirnycho-metalurhiinoi promyslovosti (pp. 25–26). КТУ.

12. Kononenko, M., & Khomenko, O. (2021). New theory for the rock mass destruction by blasting. Mining Of Mineral Deposits, 15(2), 111-123.
http://doi.org/10.33271/mining15.02.111

13. Terpigorev, A.M. (1961). Spravochnik po gornorudnomu delu. Podzemnye raboty. Gosudarstvennoe nauchno-tekhnicheskoe izdatelstvo literatury po gornomu delu.

14. Khomenko, O., Kononenko, M., Myronova, I., & Savchenko, M. (2019). Application of the emulsion explosives in the tunnels construction. E3S Web of Conferences, 123, 01039.
http://doi.org/10.1051/e3sconf/201912301039

15. Kononenko, M., Khomenko, O., Savchenko, M., & Kovalenko, I. (2019). Method for calculation of drilling-and-blasting operations parameters for emulsion explosives. Mining of Mineral Deposits, 13(3), 22-30.
http://doi.org/10.33271/mining13.03.022

16. Khomenko, O., Kononenko, M., & Myronova, I. (2017). Ecological and technological aspects of iron-ore underground mining. Mining of Mineral Deposits, 11(2), 59–67.
http://doi.org/10.15407/mining11.02.059

17. Kononenko, M., Khomenko, O., Kovalenko, I., & Savchenko, M. (2021). Control of density and velocity of emulsion explosives detonation for ore breaking. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 69-75.
http://doi.org/10.33271/nvngu/2021-2/069

18. Alyamovskiy, A.A. (2015). SolidWorks Simulation. Inzhenernyy analiz dlya professionalov: zadachi, metody, rekomendatsii. DMK Press.

19. Mukhutdinov, A.R., & Efimov, M.G. (2018). Osnovy primeneniya ANSYS Autodyn dlya resheniya zadach modelirovaniya bystroprotekayushchikh protsessov. KNITU.

20. Belyaev, N.M. (1962). Soprotivlenie materialov. Fizmatgiz.

21. Volchkov, V.M., Kozhanova, T.E., Styazhin, V.N. (2019). Modelirovanie fizicheskikh protsessov v SolidWorks Simulation. VolgGTU.

22. Torbica, S., & Lapcevic, V. (2015). Estimating extent and properties of blast-damaged zone around underground excavations. Revista Escola de Minas, 68(4), 441-453.
http://doi.org/10.1590/0370-44672015680062

23. Kononenko, M., & Khomenko, O. (2021). Mathematic simulation for the rock mass destruction by blasting. In Physical and Chemical Geotechnologies (pp. 27–37). DUT.
http://doi.org/10.15407/pcgt.21.05

24. Khomenko, O., Kononenko, M., & Savchenko, M. (2018). Technology of underground mining of ore deposits. DUT.
http://doi.org/10.33271/dut.001

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

489866
Today
This month
Total
54
9434
489866