№69-11

Comprehensive assessment the conditions of Ladyzhynska TPP hydrotechnical constructions in accordance with their reconstruction

V. Tymoshchuk1, Y. Sherstiuk1

1Dnipro University of Technology,Dnipro,Ukraine

Coll.res.pap.nat.min.univ. 2022, 69:120-132

https://doi.org/10.33271/crpnmu/69.120

Full text (PDF)

ABSTRACT

Purpose. The purpose of study is a predictive assessment of stress-strain state of the "DTEK Ladyzhynska TPP" ash dump and changes in the hydrodynamic and hydrogeochemical modes within its location area in conditions of the designed reconstruction.

The methodology. Comprehensive assessment of changes in hydrodynamic and hydrogeochemical modes around the ash dump site and defining the hydrogeomechanical stability of enclosing dams is performed based on the results of numerical modeling of groundwater flow and transport, and stress-strain state using the MODFLOW, PHASE2, and GEOSTUDIO software.

Findings. The forecast of changes in hydrodynamic and hydrogeochemical modes around the ash dump site in accordance with the accepted ash dump reconstruction scheme is carried out based on the identified regularities of their formation. An assessment of the hydrogeomechanical stability of the enclosing dams in conditions of designed building up the third storey of the ash dump was performed based on the results of numerical simulation of the stress-strain state. Measures to increase the stability of the ash dump's enclosing dams under reconstruction are justified.

The originality. New data were obtained regarding the nature of changes in hydrodynamic and hydrogeochemical modes around the ash dump under the conditions of its reconstruction. Measures to ensure stability of the hydrotechnical construction are substantiated in consequence of a comprehensive study of the stress-strain state of the material making up the enclosing dams, considering the predicted moisturizing of dam massif and the seismicity of the territory.

Practical implications. The results of the performed research form the basis for substantiating technical decisions regarding ensuring the stability of hydrotechnical constructions of energy-generating enterprises.

Keywords: hydrotechnical construction, hydrodynamic and hydrogeochemical mode, enclosing dam, seismicity of the territory, stress-strainstability.

References

1. Horova, A., & Pavlychenko, A. (2013). Doslidzhennia ekolohichnoho stanu terytorii rozmishchennia zoloshlakovykh vidkhodiv teplovykh elektrostantsii. Rozrobka rodovyshch, 393-397.

2. Verigin, N.N., Vasilyev, S.V., Sarkisyan, V.S., & Sherzhukov, B.S. (1977). Gidrodinamicheskie i fiziko-khimicheskie svoystva gornykh porod. Nedra.

3. Grinevskiy, S. O., & Novoselova, M. V. (2010). Zakonomernosti formirovaniya infiltratsionnogo pitaniya podzemnykh vod. Vodnye Resursy, 37(6), 1–12.

4. Livshits, V.M., & Belokopytova, N.A. (1987). Metodicheskie rekomendatsii po modelirovaniyu na EVM filtratsii podzemnykh vod v sloistykh tolshchakh. DO IMR.

5. Lomakin, E.A., Mironenko, V.A., & Shestakov, V.M. (1988). Chislennoe modelirovanie geofiltratsii. Nedra.

6. Norvatov, Yu.A. (1988). Izuchenie i prognoz tekhnogennogo rezhima podzemnykh vod (pri osvoenii mestorozhdeniy poleznykh iskopaemykh). Nedra.

7. Prognozy podtopleniya i raschet drenazhnykh sistem na zastraivaemykh i zastroennykh territoriyakh. Kompleks. n-i i konstrukt.-tekhnolog. – t vodosnabzheniya, kanalizatsii, gidro-tekhn. sooruzheniy i inzh. gidrogeologii. (Sprav. posobie k SNiP). (1991). Stroyizdat.

8. Rukovodstvo po proektirovaniyu zolootvalov teplovykh elektricheskikh stantsiy. P 20-74. VNIIG. (1974). Energiya.

9. Timoshchuk, V.I., & Sherstyuk, E.A. (2012). Zakonomernosti geofiltratsii v zone gravitatsionno nagruzhennykh uchastkov khvostokhranilishch i otvalov gornykh porod. Naukovyi visnyk Natsionalnoho hirnychoho universytetu, 30-36.

10. Fadeev, A.B. (1987). Metod konechnykh elementov v geomekhanike. Nedra. 221.

11. Duncan, J.M. (2000). Factors of safety and reliability in geotechnical engineering. Geotechnical & Geoenvironmental Engineering, 307-316.

12. Kinzelbach, W. (1986). Groundwater modeling. Elsevier.

13. McDonald, M.G. & Harbaugh, A.W. (1984). A modular three-dimensional finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 83-875.

14. Pande, G.N., Beer, G., & Williams, J.R. (1990). Numerical Methods in Rock Mechanics. John Wiley and Sons, Ltd.

15. DBN V.1.2-2:2006. Systema zabezpechennia nadiinosti ta bezpeky budivelnykh ob’iektiv. Navantazhennia i vplyvy. Normy proektuvannia. (2006). Minbud Ukrainy.

16. DBN V.1.2-14-2009. Zahalni pryntsypy zabezpechennia nadiinosti ta konstruktyvnoi bezpeky budivel, sporud, budivelnykh konstruktsii ta osnov. (2009). Minrehionbud Ukrainy.

17. DBN-V.2.1-10-2009. Osnovy ta fundamenty sporud. Osnovni polozhennia proektuvannia. (2009). Minrehionbud Ukrainy.

18. DBN V.2.4-3:2010. Hidrotekhnichni, enerhetychni ta melioratyvni systemy i sporudy, pidzemni hirnychi vyrobky. Hidrotekhnichni sporudy. Osnovni polozhennia. (2010). Minrehionbud Ukrainy.

19. DBN V.1.1-12:2014. Budivnytstvo v seismichnykh raionakh Ukrainy. (2014). Minrehionbud Ukrainy.

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

477199
Today
This month
Total
154
6837
477199