№69-21
Monitoring and operational control of the gas hydrates formation in gas degassing pipelines
L. Shyrin1, R. Yehorchenko1, V. Taran1
1Dnipro University of Technology, Dnipro, Ukraine
Coll.res.pap.nat.min.univ. 2022, 69:243-253
https://doi.org/10.33271/crpnmu/69.243
Full text (PDF)
ABSTRACT
Purpose. Creation of operational determination methodology of mechanical and liquid deposit zones in deformed sections of mine degassing gas pipelines to prevent the process of hydrate formation and increase their throughput.
Research methodology. The peculiarities of monitoring the technical condition of mine degassing systems (MDS), as well as a methodical support for operational control of their formation zones in the mine environment real conditions, are considered. Approaches to assessment, control and forecasting methods of gas hydrate formation zones under the influence of mine environment specific factors were determined and innovative technical solutions were developed to increase the degassing system throughput.
Findings. Based on the results of modern trends assessment in the field of monitoring and forecasting gas hydrate formation zones, it was established that a fundamentally new approach to ensuring the accident-free operation of pipeline transport is being implemented in foreign practice.
Originality. Grounded innovative technical solutions for existing degassing systems modernization to increase the throughput capacity of mine pipelines and predict the formation zones of crystalline gas hydrates during transporting methane-air mixture from wells to vacuum pumping stations.
Practical implications. A program and methodology for monitoring and diagnosing mine degassing gas pipelines have been developed using innovative technical solutions to promptly determine the gas hydrate formation places and increase throughput during the current operation.
Keywords: degassing, underground vacuum gas pipeline, methane-air mixture, monitoring, gas hydrates, throughput.
References
1. Rozghoniuk, V.V., Rudnik, A.A., & Kolomieiev, V.M. (2001). Dovidnyk pratsivnyka hazotransportnoho pidpryiemstva. Rostok.
2. STP 320.30019801.018-2000. Pravyla tekhnichnoi ekspluatatsii mahistralnykh hazoprovodiv.
3. Makogon, Yu.F. (1985). Gazovye gidraty, preduprezhdenie ikh obrazovaniya i ispolzovanie. Nedra.
4. Prakhova, M. Yu., Krasnov, A. N., & Khoroshavyna, E.A. (2017). Analiz metodiv diahnostuvannia hidratoutvorennia u shleifakh. Elektronnyi zhurnal №1 "Naftohazova sprava". 77-94.
5. Shyrin, L.N., & Lytvyn, A.D. (2016). Poperedzhennia ta operatyvnyi kontrol utvorennia hidrativ u dehazatsiinykh truboprovodakh. Hazohidratni tekhnolohii u hirnytstvi, naftohazovii spravi, heotekhnitsi ta enerhetytsi. 255- 259.
6. Mazur, M.P., & Poberezhnyi, L.Ya. (2014). Modeliuvannia protsesiv hidratoutvorennia pid chas transportuvannia hazu. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 4, 26-32.
7. Khymko, M.P., Datsiuk, A.V., Frolov, V.A., & Ponomarov, Yu.V. (2007). Dovidnyk inzhenera dyspetcherskoi sluzhby. VAT UTsEBOPnaftohaz.
8. Shyrin, L.N., Yehorchenko, R.R., & Serhiienko, M.I. (2021). Osoblyvosti diahnostyky tekhnichnoho stanu transportno – tekhnolohichnoi systemy «shakhtnyi hazoprovid – hirnycha vyrobka. Naukovo–tekhnichnyi zhurnal «HEOINZhENERIIa», 6, 28-37.
https://doi.org/10.20535/2707-2096.6.2021.241823
9. Bondarev, E.A., Gabysheva, L.N., & Kanibolotskiy, M.A. (1982). Modelirovanie obrazovaniya gidratov pri dvizhenii gaza v trubakh. Izv. AN SSSR. Mekhanika zhidkosti i gaza, 5, 105-112.
10. Argunova, K.K., Bondarev, E.A., & Rozhin, I.I. (2011). Matematicheskie modeli obrazovaniya gidratov v gazovykh skvazhinakh. Kriosfera Zemli, 15(1), 65-69.
11. Khayrullin, M. Kh., Shamsiev, M. N., Morozov, P. E., & Tulupov, L. A. (2008). Modelirovanie gidratoobrazovaniya v stvole vertikalnoy gazovoy skvazhiny. Vychislitelnye tekhnologii, 13(5), 88-94.
12. Shyrin, L., Bartashevsky, S., & Yehorchenko, R. (2021). Specific features of monitoring and maintaining of technical conditions of mine degassing pipelines in terms of mining intensification. Collection of Research Papers of the National Mining University, 67, 153–164.
https://doi.org/10.33271/crpnmu/67.153
13. Bethune, J.D.. (2009). Engineering Design and Graphics with Solid Works. Upper Saddle River: Prentice Hall.
14. Poberezhnyi, L.Ya., & Mazur, M.P. (2013). Osoblyvosti korozii promyslovykh truboprovodiv pid diieiu hazohidrativ. Visnyk SNU, 13 (202), 167-177.
15. Novikov, L.A. (2008). Matematicheskaya model dvizheniya turbulentnogo potoka gazovzvesi v degazatsionnom truboprovode. Geotekhnicheskaya mekhanika: Mezhved. sb. nauch. tr., 76, 126-131.
16. Product Data Sheet: Rosemount™ 3051. Pressure Transmitter. (2017). 00813-0100-4001, Rev TA.
https://www.instrumart.com/assets/rosemount_3051_datasheet.pdf