№70-09

Stress-strain state of composite rope considering influence of its nonlinear deformation and reinforcement element breakage

I. Belmas1, D. Kolosov2, S. Onyshchenko2,O. Bilous1, H. Tantsura1, P. Chernysh2

1 Dniprovsk State Technical University, Kamianske, Ukraine

2 Dnipro University of Technology, Dnipro, Ukraine

Coll.res.pap.nat.min.univ. 2022, 70:99-106

https://doi.org/10.33271/crpnmu/70.099

Full text (PDF)

ABSTRACT

Purpose. Establishing the influence character of deformation nonlinearity in a rubber-cable rope with a breakage of continuity of its arbitrary cable. Justification of a method of determining a stress-strain state of a rope.

Research methodology. Construction of a mathematical model of a stress-strain state of a rubber-cable rope considering nonlinearity of its deformation in a presence of a breakage of an arbitrary cable and analytical solution using the methods of mechanics of layered composite materials with soft and hard layers.

Findings. An algorithm for determining a stress-strain state of a rubber-cable rope of an arbitrary construction is developed, considering nonlinearity of its deformation and a presence of a breakage of an arbitrarily located cable. A stress-strain state model of a rubber-cable rope is solved analytically in a closed form, which allows considering the obtained algorithm sufficiently reliable.

Scientific novelty. Establishing an influence character of deformation nonlinearity in a rubber-cable rope with a cable breakage on its stress-strain state. Justification of a method for determining a stress state of a rubber-cable rope, considering mechanical characteristics and rope construction, a nonlinearity of its deformation, and a possible breakage of an arbitrary cable.

Practical significance. The developed algorithm allows calculating displacements of cables and distributions of forces among them in a rubber-cable rope of a given construction with a broken arbitrary cable under the given conditions of connecting rope ends. The results make it possible to consider the influence of nonlinear rope deformation with a cable breakage on a stress-strain state of a rope and allow a possibility of justified determination for safe operation of rubber-cable ropes in hoisting machines and as carrying elements of cable-stayed capital structures.

Keywords: flat rubber-cable rope, composite construction, cable-stayed structure, stress-strain state, deformation nonlinearity, cable breakage, mathematical model, boundary conditions, determination algorithm, operational safety.

References

1. Volokhovskiy, V.Yu., Radin, V.P., & Rudyak, M.B. (2010). Kontsentratsiya usiliy v trosakh i nesushchaya sposobnost rezinotrosovykh konveyernykh lent s povrezhdeniyami. Vestnik MEI, (5), 5-12.

2. Belmas, I.V. (1993). Napryazhennoe sostoyanie rezinotrosovoy lenty pri proizvolnom povrezhdenii trosov. Problemy prochnosti i nadezhnosti mashin, (6), 45-48.

3. Belmas, I.V., Kolosov, D.L., Tantsura, A.I., & Konokh, Yu.V. (2009). Issledovanie vliyaniya poryva trosovoy osnovy na prochnost kanata stupenchatoy konstruktsii. Neobratimye protsessy v prirode i tekhnike: Materialy nauch. konf. Moskva: MGTU im. N.E. Baumana, 2, 255-257.

4. Belmas I.V., & Bobylova I.T. (2012) Vplyv poryviv trosiv na mitsnist ploskoho tiahovoho orhanu. Recueil des exposes des participants de VI Conference internationale scientifigue et methodigeue, 88-91.

5. Kolosov, L.V., & Belmas, I.V. (1990). Issledovanie prochnostnykh kharakteristik obraztsov povrezhdennykh rezinotrosovykh lent. Izvestiya vuzov. Gornyy zhurnal, (8), 81-84.

6. Kolosov, L.V., & Belmas, I.V. (1991). Eksperimentalnye issledovaniya agregatnoy prochnosti RTL. Izvestiya vuzov. Gornyy zhurnal, (1), 85-87.

7. Ropay, V.A. (2016) Shakhtnye uravnoveshivayushchie kanaty: monografiya. Natsionalnyy gornyy universitet.

8. Belmas, I., & Kolosov, D. (2011). Thestress-strainstateofthesteppedrubber-ropecableinbobbinofwinding. TechnicalandGeoinformationel Sistems in Mining, 211-214.
https://doi.org/10.1201/b11586-35

9. Belmas, I., Kolosov, D., Bilous, O., & Onyshchenko, S. (2018). Stress-strain state of a conveyor belt with cables of different rigidity and their breakages. Fundamental and applied researches in practice of leading scientific schools, 26(2), 231–238.

10. Belmas, I., Kolosov, D., Chechel, T., Vorobiova, O., & Chernysh, O. (2020). Influence of change during the mechanical properties of rubber on the stressed state of a rubber traction body with a damaged cable. Collection of Research Papers of the National Mining University, 62, 149–155.
https://doi.org/10.33271/crpnmu/62.149

11. Kolosov, D.L., Bilous, O.I., & Hurov, I.A. (2019). Mitsnist vidnovlenoi humotrosovoi strichky. Matematychni problemy tekhnichnoi mekhaniky ta prykladnoi matematyky. Materialy mizhnarodnoi naukovoi konferentsii, 126-127.

12. Belmas, I., Kolosov, D., Onyshchenko, S., & Bobylova, I. (2020). Partial restoration of tractive ability of rubber-cable tractive element with damaged cable base. Collection of Research Papers of the National Mining University, 60, 196–206.
https://doi.org/10.33271/crpnmu/60.196

13. Belmas, I.V., Bilous, O.I., Tantsura, H.I., & Bobylova, I.T. (2018). Zirochka. (Patent № 117954)

14. Belmas, I.V., Kolosov, D.L., Bilous, O.I., & Bobylova, I.T. (2019). Doslidzhennia napruzhenoho stanu hnuchkoho tiahovoho orhanu z kinematychnym zv’iazkom. Zbirnyk naukovykh prats VIII Mizhnarodnoi naukovo-tekhnichnoi konferentsii «Prohresyvni tekhnolohii v mashynobuduvanni RTME 2019», 72-73.

15. Kolosov, L.V., & Belmas, I.V. (1990). Analiz skhem stykovykh soedineniy rezinotrosovykh lent. Izvestiya vuzov. Gornyy zhurnal, (2), 83-85.

16. Levchenya, Zh.B. (2004). Povyshenie nadezhnosti stykovykh soedineniy konveyernykh lent na gornodobyvayushchikh predpriyatiyakh: Na primere RUP "PO "Belaruskaliy" (dissertatsiya ... kandidata tekhnicheskikh nauk: 05.05.06).

17. Tantsura, H.I. (2010). Hnuchki tiahovi orhany v mashynobuduvanni. Stykovi ziednannia konveiernykh strichok: monohrafiia. DDTU. 

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

477199
Today
This month
Total
154
6837
477199