№71-04

On the time of well transition to industrial production mode

Yu. Voitenko1, V. Vapnichna2, M. Krivtsov, О. Voitenko3

1Institute of Hydromechanics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

2National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine

3Ovcharenko Institute of Biocolloidall chemistry of NASU, Kyiv, Ukraine

Coll.res.pap.nat.min.univ. 2022, 71:42-52

https://doi.org/10.33271/crpnmu/71.042

Full text (PDF)

ABSTRACT

The purpose of the article wasanalysis of the reasons for the different velocity of transition of the "well-reservoir" system from one thermodynamic state to another based on experimental data on time and main energy parameters for the conditions of gas and oil and gas fields.

The methods. Experimental determination of the transition time of wells to industrial production mode; and analysis of experimental data.

Findings. The transition time of the "well-reservoir" system from one thermodynamic state to another is determined by the internal energy of the reservoir and depends on the energy of external influence and the determining parameters: reservoir pressure and temperature. For traditional reservoirs - collectors, including for reservoirs with low reservoir pressures, it is 104 - 107 s. For formations with high formation pressures, the forecast time for the transition of the well to the mode of industrial production or emergency release of formation fluid is 100 - 103 s.

Theoriginality. The work shows that in the case of low-energy impact, structural changes in rocks in reservoir conditions occur under sublimit slow loads at the level of approximately 40...70% of the limit value of the dynamic strength of the reservoir rock. It is experimentally shown that the transition of the "well-reservoir" system from one thermodynamic state to another flows for a time that depends on the internal energy of the reservoir and it decreases from t=104 – 107 s to t=100 – 103 and from ln t = 9.3...14.8 to  ln t = 0...6.9 in the case of an increase in the energy of external influence, or reservoir parameters - pressure and temperature.

Practicalimplementation. The transition time of the "well-reservoir" system from one thermodynamic state to another is determined by the internal energy of the reservoir and depends on the energy of external influence and the determining parameters: reservoir pressure and temperature, as well as the energy of elastic or elastoplastic deformation of the rock. The practical value is the ability to determine the type of oil and gas deposit based on this parameter and choose equipment.

Keywordsoil-reservoir,system "well-reservoir",internal energy of the reservoir,mountain pressure,the time of transition of the well to the industrial mode of production.

References

1. Lukin, A. E. (2014). Uglevodorodnyy potentsial bolshikh glubin i perspektivy ego osvoeniya v Ukraine. Geofizicheskiy zhurnal, 4(36), 3–23.

2. Starostenko, V. I., Lukin, A. E., Tsvetkova, T. A. i dr. (2011). Ob uchastii superglubinnykh flyuidov v naftidogeneze (po dannym izucheniya unikalnogo neftyanogo mestorozhdeniya Belyy Tigr). Geofizicheskiy zhurnal,4(33), 3–32.

3. Lukin, A. E. (2011) O prirode i perspektivakh gazonosnosti nizkopronitsaemykh porod  osadochnoy obolochki Zemli. Dopovidi NAN Ukrainy, 3, 114–123.

4. Lukin, A. E. (2009). Samorodno-metallicheskie mikro- i nanovklyucheniya v formatsiyakh neftegazonosnykh basseynov – trassery superglubinnykh flyuidov. Geofizicheskiy zhurnal,31(2), 61–92.

5. Polivtsev, A. V. (2011). Suchasni heodynamichni rezhymy naftohazoperspektyvnykh struktur pivnichnoho bortu Dniprovsko-Donetskoi zapadyny. Zbirnyk naukovykh prats UkrDHRI I, 1, 173–203.

6. Lukin, A. E., & Shestopalov, V. M. (2018). Ot novoy geologicheskoy paradigmy k zadacham regionalnykh geologo-geofizicheskikh issledovaniy. Geofizicheskiy zhurnal, 40(4), 3–72.

7. Mikhalyuk, A. V., & Voytenko, Yu. I. (2011). Dilatansionnyy mekhanizm genezisa treshchinovatosti porodnykh massivov. Zbirnyk naukovykh prats UkrDHRI. 4, 50–66.

8. Han, Hong Xue, &Shunde,Yin. (2018). Determination of In-Situ Stress and Geomechanical properties from Borehole Deformation.Energies,11(1),131.
https://doi.org/10.3390/en1101013

9. Khomenko, O., Kononenko, M., & Netecha, M. (2016). Industrial research into massif zonal fragmentation around mine workings.Mining of Mineral Deposits, 10(1), 50–56.
http://doi.org/10.15407/mining10.01.050

10. Khomenko, O. E. (2012). Energeticheskiy metod issledovaniya zonalnoy dezintegratsii gornykh porod. Naukovyi visnyk NHU, 4, 44–54.
http://nbuv.gov.ua/UJRN/Nvngu_2012_4_10.

11. Griniov, V., Zakharova, L., Diedich, I., & Nazymko, V. (2017). Distant interaction of rock mass clusters around underground opening. Mining of mineral deposits, 2(2), 79–83.

12. Voytenko, Yu. I., & Kovtun, A. V. (2017). O predvybrosovom sostoyanii porod i vozmozhnom mekhanizme gornykh udarov i vnezapnykh vybrosov. Mineralni resursy Ukrainy, 2, 32–35.

13. Voytenko, Yu. I., & Poplavskiy, V. A. (1999). Kinetika treshchin v obemnykh obraztsakh PMMA pri vnutrennem dinamicheskom nagruzhenii. Problemy prochnosti,1, 86 – 94.

14. Voitenko, Yu. I., Kovtun, O.V. (2017).  Pro v’iazke ta krykhke ruinuvannia hirskykh porid pry udari ta vybukhu. Visnyk Natsionalnoho tekhnichnoho universytetu "Kyivskyi politekhnichnyi instytut". Seriia "Hirnytstvo", 34, 9-17.

15. Mykhaliuk, A. V. & Voitenko, Yu. I (2011). Dylatansiinyi mekhanizm utvorennia fliuidoprovidnykh kanaliv na velykykh hlybynakh. ZbirnyknaukovykhpratsUkrDHRI. 4, 188–199.

16. Mikhalyuk. A. V. (1979). Gornye porody pri neravnomernykh dinamicheskikh nagruzkakh. Naukova dumka.

17. Voytenko, Yu. I. (1997). O vremeni zaderzhki starta treshchiny pri razrushenii nemetallicheskikh materialov. Problemy prochnosti, 1, 133-137.

18.Wan-xing, R., Zeng-hui, K., & De-ming, W. (2011). Causes of Spontaneous Combustion of Coal and Its Prevention Technology in The Tunnel Fall of Ground of Extra-thick Coal Seam. Procedia Engineering, 26, 717–724.
https://doi.org/10.1016/j.proeng.2011.11.2228

19. Makarov, P. V.(2010).Self-organization criticality of deformation and prospects for fracture prediction.Physical mesomechanics,13(5-6),292-305.
https://doi.org/10.1016/j.physme.2010.11.010

20. Hubych I. B., Krupskyi Yu. Z., & Derenevskyi A. M. (2012). Metodyka perehliadu perspektyv naftohazonosnosti rozrizu likvidovanykh sverdlovyn. Zbirnyk naukovykh prats UkrDHRI. 3, 120–127.

21. Nahornyi, V. P., & Denysiuk, I. I.  (2013). Tekhnolohii intensyfikatsii  vydobutku vuhlevodniv. NAN Ukrainy, Instytut heofizyky im. S.I. Subbotina.

22. Mysliuk, M.A. & Rybchych, I. Y. (2012). Burinnia sverdlovyn: Dovidnyk: U 5 t. T. 4: Zavershennia sverdlovyn.Kyiv: «Interpres LTD».

23. Do Vu Dyk Tam (2015). Interpretatsiia rezultativ doslidzhen z vykorystanniam suchasnykh prohramnykh paketiv. Innovative views of young scientists. Tekhnichni nauky – Rozrobka korysnykh kopalyn i heodeziia.
https://www.sworld.com.ua/konferm1/225.pdf

24. Pokhylko, A. M. (2019). Problema anomalno nyzkykh plastovykh tyskiv na naftohazovykh rodovyshchakh Ukrainy. Mineralni resursy Ukrainy, 4, 17-22.

25. Voitenko, Yu. I. (2017). Proznachennia heomekhaniky v naftohazovii heolohii ta protsesakh rozkryttia produktyvnykh horyzontiv. Mineralni resursy Ukrainy, 1, 52-55.

26. Kravchenko, O. V. (2014) Sovershenstvovanie tekhnologii kompleksnogo vozdeystviya na produktivnye plasty neftyanykh i gazovykh skvazhin. Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy, 6/5 (72), 4 – 9.

27. Tekhnichnyi ohliad metodyky vysokoenerhetychnoi hazovoi stymuliatsii. (1996). Pereklad s anhl. Bob Haney (Propellant StimulationServices) David Cuthill, P. Eng (Computalog Ltd).

28. Voitenko, Yu. I. (2013). Efektyvnist potuzhnykh metodiv intensyfikatsii naftohazovydobutku i perspektyvy yikh zastosuvannia dlia netradytsiinykh kolektoriv. Naftohazova haluz Ukrainy, 5, 31-34.

29. Voitenko, Yu. I., Vapnichna, V. V., & Voitenko, O. Yu. (2022). Pro ruinuvannia ta rozmitsnennia hirskykh porid pid chas vybukhu v plastovykh umovakh. Heoinzheneriia,7, 7-16.

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

477199
Today
This month
Total
154
6837
477199