№71-08

Problems of waste rock formation during mining of Western Donbass coal reserves: state-of-the-art and solutions

M. Petlovanyi1, K. Sai1, O. Stoliarska1

1Dnipro University of Technology, Dnipro, Ukraine

Coll.res.pap.nat.min.univ. 2022, 71:79-90

https://doi.org/10.33271/crpnmu/71.079

Full text (PDF)

ABSTRACT

Purpose. The research purpose is to analyze and generalize the problems of waste rock accumulation, as well as to determine the directions for their possible solution in order to improve the ecological-economic conditions for mining coal reserves in the Western Donbass.

Methods. A comprehensive scientific-methodological approach is used, which consists in studying regional accounts on the state of the environment, data from the register of waste disposal sites in the Dnipropetrovsk Oblast, peculiarities of placement of dumps according to the Google Earth program and collected mine data. To study the feasibility of processing dumps, a SWOT-analysis is used, as well as the analysis of existing technologies for processing the rock mass from waste dumps, based on foreign and domestic experience.

Findings. Nine rock dumps have been identified, formed as a result of the functioning of the Western Donbass coal mines, where almost 130 million tons of waste rocks have been accumulated on an area of about 190 hectares. It is noted that the reclamation of disturbed lands as the main means of rock utilization is insufficient. Based on a thorough analysis of the SWOT-analysis results, a strategic direction for processing has been determined – the use of rock mass as a raw material for construction (materials and roads) with accompanying extraction of coal, aluminum and iron. The existing technologies for the processing of waste rocks have been systematized. It has been determined that the largest scaling of waste dump processing in the Western Donbass mines can be achieved with a combination of mechanical-chemical methods, among which gravity and magnetic beneficiation methods, mechanical grinding and chemical leaching are priority.

Originality. The mechanisms for handling coal waste from coal mines in the Western Donbass have been determined to solve ecological-economic problems associated with their accumulation.

Practical implications. The research results reveal possible ways of solving the problems of waste rock accumulation in the Western Donbass mines, which makes ecological and economic sense.

Keywords: coal mine, rock dump, processing, mineral and raw-material resources, utilization.

References

1. Shah,Y.T. (2021). Hybrid energy systems – strategy for decarbonization. Hybrid Energy Systems, 1-18.
https://doi.org/10.1201/9781003159421-1

2. Debiagi, P., Rocha, R.C., Scholtissek, A., Janicka, J., & Hasse, C. (2022). Iron as a sustainable chemical carrier of renewable energy: Analysis of opportunities and challenges for retrofitting coal-fired power plants. Renewable and Sustainable Energy Reviews, (165), 112579.
https://doi.org/10.1016/j.rser.2022.112579

3. Statystychnyi zbirnyk «Palyvno-enerhetychni resursy Ukrainy» za 2020 rik. (n.d.).
https://www.ukrstat.gov.ua/druk/publicat/kat_u/2021/zb/12/Zb_per.pdf

4. Mineralni resursy Ukrainy. (2020). Derzhavne naukovo-vyrobnyche pidpryiemstvo «Derzhavnyi informatsiinyi heolohichnyi fond Ukrainy».

5. Cornot-Gandolphe, S. (2019). Status of global coal markets and major demand trends in key regions.The Institut français des relations internationals.

6. Bai, E., Li, X., Guo, W., Tan, Y., Guo, M., Wen, P., & Ma, Z. (2022). Characteristics and formation mechanism of surface residual deformation above longwall abandoned goaf. Sustainability, 14(23), 15985.
https://doi.org/10.3390/su142315985

7. Shang, H., Zhan, H.-Z., Ni, W.-K., Liu, Y., Gan, Z.-H., & Liu, S.-H. (2022). Surface environmental evolution monitoring in coal mining subsidence area based on multi-source remote sensing data. Frontiers in Earth Science, (10), 1-19.
https://doi.org/10.3389/feart.2022.790737

8. Petlovanyi, M.V., & Haidai, A.A. (2017). Analiz nakopychennia i systematyzatsiia porodnykh vidvaliv vuhilnykh shakht, perspektyvy yikh rozrobky. Heotekhnichna mekhanika, (136), 147-158.

9. Shustov, O., Petlovanyi, M., Zubko, S., & Sherstuk, Y. (2019). Geomechanical problems of stability of natural-technogenic ore deposits. Collection of Research Papers of the National Mining University, 58, 154–165.
https://doi.org/10.33271/crpnmu/58.154

10. Tao, M., Cheng, W., Nie, K., Zhang, X., & Cao, W. (2022). Life cycle assessment of underground coal mining in China. Science of The Total Environment, (805), 150231.
https://doi.org/10.1016/j.scitotenv.2021.150231

11. Kovrov, O., & Kulikova, D. (2022). Improvement of the mine water purification efficiency via modified settling tank. Ecological Engineering & Environmental Technology, 23(1), 65-75.
https://doi.org/10.12912/27197050/142943

12. Zhang, J., Zhang, Q., Spearing, A. J. S. (Sam), Miao, X., Guo, S., & Sun, Q. (2017). Green coal mining technique integrating mining-dressing-gas draining-backfilling-mining. International Journal of Mining Science and Technology, 27(1), 17-27.
https://doi.org/10.1016/j.ijmst.2016.11.014

13. Petlovanyi, M., Malashkevych, D., Sai, K., Bulat, I., & Popovych, V. (2021). Granulometric composition research of mine rocks as a material for backfilling the mined-out area in coal mines. Mining of Mineral Deposits, 15(4), 122-129.
https://doi.org/10.33271/mining15.04.122

14. Brodny, J., & Tutak, M. (2022). Challenges of the polish coal mining industry on its way to innovative and sustainable development. Journal of Cleaner Production, (375), 134061.
https://doi.org/10.1016/j.jclepro.2022.134061

15. Hrinov, V.H., & Khorolskyi, A.O. (2021). Novi pidkhody i rezultaty doslidzhen po ratsionalizatsii vidpratsiuvannia rodovyshch korysnykh kopalyn. Fizyko-tekhnichni problemy hirnychoho vyrobnytstva, (23), 174-199.

16. Kuzmenko, A.M., Petlevanyy, M.V., & Usatyy, V.Yu. (2010). Vliyanie tonkoizmelchennykh fraktsiy shlaka na prochnostnye svoystva tverdeyushchey zakladki. Materialy Shkoly pidzemnoi rozrobky, 383-386.

17. Song, W., Zhang, J., Li, M., Yan, H., Zhou, N., Yao, Y., & Guo, Y. (2022). Underground disposal of coal gangue backfill in China. Applied Sciences, 12(23), 12060.
https://doi.org/10.3390/app122312060

18. Barabash, M., & Cherednichenko, Y. (2015). Transformation SHC “Pavlogradvugillia” in the world class coal-mining company – PJSC “DTEK Pavlogradvugillia”. Mining of Mineral Deposits, 9(1), 15-23.
https://doi:10.15407/mining09.01.015

19. Malashkevych, D., Poimanov, S., Shypunov, S., & Yerisov, M. (2020). Comprehensive assessment of the mined coal quality and mining conditions in the Western Donbas mines. E3S Web of Conferences, (201), 01013.
https://doi.org/10.1051/e3sconf/202020101013

20. Saik, P.B., Lozynskyi, V.H., Petlovanyi, M.V., Sai, K.S., & Stryzhakov, Ye.M. (2018). Suchasnyi pidkhid do osvoiennia enerhetychnykh resursiv zalyshenykh ta nekondytsiinykh zapasiv vuhillia. Zbirnyk naukovykh prats Natsionalnoho hirnychoho universytetu, (54), 152-168.

21. Afum, B.O., Caverson, D., & Ben-Awuah, E. (2018). A conceptual framework for characterizing mineralized waste rocks as future resource. International Journal of Mining Science and Technology, 29(3), 429-435.
https://doi.org/10.1016/j.ijmst.2018.07.002

22. Lèbre, É., Corder, G.D., & Golev, A. (2017). Sustainable practices in the management of mining waste: a focus on the mineral resource. Minerals Engineering, (107), 34-42.
https://doi.org/10.1016/j.mineng.2016.12.004

23. Rehionalna dopovid pro stan navkolyshnoho pryrodnoho seredovyshcha v Dnipropetrovskii oblasti za 2021 rik. (2022). Departament ekolohii ta pryrodnykh resursiv Dnipropetrovskoi OVA.

24. Reiestr mists vydalennia vidkhodiv u Dnipropetrovskii oblasti stanom na 2021 rik. (2022).
https://adm.dp.gov.ua/storage/app/media/EKOLOGIA/MVV-REESTR-20-08-2021.pdf

25. Vernigora, V.N. (2019). Dekarbonizatsiya i tsirkulyatsionnaya ekonomika – zvenya odnoy tsepi. Doklad.
https://dtek.com/content/files/vernigora-vladislav.pdf

26. Buzilo, V.I., Koshka, A.G., Serdyuk, V.P., Sulaev, V.I., & Yavorskiy, A.V. (2012). Tekhnologiya selektivnoy otrabotki tonkikh ugolnykh plastov. NGU.

27. Petlovanyi, М.V., Мalashkevych, D.S., & Sai, K.S. (2020). The new approach to creating progressive and low-waste mining technology for thin coal seams. Journal of Geology, Geography and Geoecology, 29(4), 765-775.
https://doi.org/10.15421/112069

28. Мalashkevych, D.S.,Petlovanyi, М.V., Sai, K.S., &Zubko, S.A. (2022). Research into the coal quality with a new selective mining technology of the waste rock accumulation in the mined-out area. Mining of Mineral Deposits, 16(4), 103-114.
https://doi.org/10.33271/mining16.04.103

29. Harkusha, V.S. (2017). Kriplennia mahistralnykh vyrobok z vykorystanniam tverdiiuchykh sumishei na osnovi shakhtnoi porody. NHU.

30. Rozanski, Z., Suponik, T., Matusiak, P., Kowol, D., Szpyrka, J., Mazurek, M., & Wrona, P. (2016). Coal recovery from a coal waste dump. E3S Web of Conferences, (8), 01052.
https://doi.org/10.1051/e3sconf/20160801052

31. Vo, T. L., Nash, W., Del Galdo, M., Rezania, M., Crane, R., Mousavi Nezhad, M., & Ferrara, L. (2022). Coal mining wastes valorization as raw geomaterials in construction: A review with new perspectives. Journal of Cleaner Production, (336), 130213.
https://doi.org/10.1016/j.jclepro.2021.130213

32. Taha, Y., Benzaazoua, M., Hakkou, R., & Mansori, M. (2017). Coal mine wastes recycling for coal recovery and eco-friendly bricks production. Minerals Engineering, (107), 123-138.
https://doi.org/10.1016/j.mineng.2016.09.001

33. Zubova, L.G., Zubov, A.R., Verekh-Belousova, K.I., & Oleynik, N.V. (2012). Poluchenie metallov iz terrikonov ugolnykh shakht Donbassa. VNU.

34. Amrani, M., Taha, Y., El Haloui, Y., Benzaazoua, M., & Hakkou, R. (2020). Sustainable reuse of coal mine waste: Experimental and economic assessments for embankments and pavement layer applications in Morocco. Minerals, 10(10), 851.
https://doi.org/10.3390/min10100851

35. Chugh, Y. P., & Behum, P. T. (2014). Coal waste management practices in the USA: An overview. International Journal of Coal Science & Technology, 1(2), 163-176.
https://doi.org/10.1007/s40789-014-0023-4

36. Pactwa, K., Woźniak, J., & Dudek, M. (2020). Coal mining waste in Poland in reference to circular economy principles. Fuel, (270), 117493.
https://doi.org/10.1016/j.fuel.2020.117493

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

477199
Today
This month
Total
154
6837
477199