№71-12
Electricity storage systems
Ya. Yaroshenko1, O. Bobrov1, D. Tsyplenkov1, V. Kuznetsov3, O. Savvin3
1Dnipro University of Technology, Dnipro, Ukraine
2Rocket-and-Space Engineering College of Oles Honchar Dnipro National University, Dnipro, Ukraine
3Ukrainian State University of Science and Technologies, Dnipro, Ukraine
Coll.res.pap.nat.min.univ. 2022, 71:131-144
https://doi.org/10.33271/crpnmu/71.131
Full text (PDF)
ABSTRACT
Purpose. Analysis of the state of energy storage systems in the world, determination of prospects for their development and comparison of electricity storage methods.
Research methodology. Theoretical justification and comparison of electricity storage systems taking into account the real indicators of the energy system of Ukraine as of the end of 2021.
The results. Show that there is a need for a theoretical and practical approach to the implementation of storage capacities in order to maintain the balance of the electric power system. As a result of the review of the most common electricity storage devices, their features as a whole were highlighted. All of them have both advantages and disadvantages. However, in a comprehensive approach to their promotion, it is possible to obtain the greatest expected result. The most promising, from the point of view of the chain: environmental friendliness - cost - relevance - necessity, is – hydrogen.
Scientific novelty. Is that the possibility of combined use of various types of battery systems with different characteristics is being considered.
Practical value. The possibility of introducing battery capacities at the industrial level for more effective decentralization of the state's energy sector. Today, without the necessary infrastructure, re-equipment of existing energy-receiving and distribution stations, large-scale investments, hydrogen cannot become effective, as much as it is capable, because energy must move from the wire to the gas, and then back to the wire. That is, there is a certain vector of energy that is constantly in a "transitional" position. That is why the energy efficiency at each of the levels of converting hydrogen into electricity drops. Efficiency, under normal, normal conditions of "yesterday's" day in this case will be about 80%. To transport hydrogen, it is necessary to compress and cool it. This process takes up to 10-15% of energy. For further transformation into electrical energy, thermal energy is consumed, and as a result, electricity can be obtained with an efficiency of ~65-70%.
Keywords: electric power industry, renewable energy sources, power plant, power supply, alternative energy, profitability, maneuverability, coefficient, accumulation, hydrogen.
References
1. 12-i Mizhnarodnyi Ukrainskyi enerhetychnyi forum Instytutu Adama Smita» (n.d.).RetrievedJuly 22,2022,from:
https://euea-energyagency.org/uk/novyny-ta-podiyi/novyny-rynku/12-j-mizhnarodnyj-ukrayinskyj-energetychnyj-forum-instytutu-adama-smita/
2. Ukrainskyi enerhetychnyi forum.(n.d.). Retrieved July22, 2022, from:
https://chamber.ua/wp-content/uploads/2022/02/UEF22-prohrama.pdf
3. Proekt rozrobky «Ukrainskoi enerhetychnoi stratehii do 2050 roku». (n.d.). Retrieved July22, 2022, from:
https://home.kpmg/ua/uk/home/media/press-releases/2021/07/kpmg-v-ukrayini-vyhrala-proyekt.html
4. Ukrainska enerhetychna stratehiia 2035. (n.d.). Retrieved July22, 2022, from:
https://zakon.rada.gov.ua/laws/show/605-2017-%D1%80#Text
5. DSTU 3440–06, «Systemy Enerhetychni» (2006). Derzhavnyi standart Ukrainy.
6. Bondarenko, V. I. (2005). Enerhetyka: istoriia, sohodennia i maibutnie. Tom №3.
7. Zhurakhivskyi, A. V., Kinash, B.M., & Pastukh, O.R. (2012). Nadiinist elektrychnykh system i merezh. Navch. posib. Vyd-vo Lviv. Politekhniky.
8. Ivakhnov, A. B., Lazurenko, O.P., & Fedorchuk, S.O. (2018). Systemy akumuliuvannia elektroenerhii, analiz mozhlyvostei ta yikh poiednannia dlia zastosuvannia v enerhosystemi. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Seriia: Enerhetyka nadiinist ta enerhoefektyvnist, 10 (1286). 53-59.
9. Sydorov, V. I. (2016) Tekhnolohii hidro- ta vitroenerhetyky. Cherkasy.
10. Kudria, S.O. (2020) Vidnovliuvani dzherela enerhii. Instytut vidnovliuvanoi enerhetyky NANU.
11. Hrebeniuk, A.M. (2014) Sposoby akumuliatsii elektroenerhii z netradytsiinykh dzherel. Hirnycha elektromekhanika ta avtomatyka, 91, 131-136.
12. Andrijanovits, A., Hoimoja, H., & Vinnikov, D. (2012). Comparative Review of Long-Term Energy Storage Technologies for Renewable Energy Systems. Electronics and Electrical Engineering, 118(2).
https://doi.org/10.5755/j01.eee.118.2.1168
13. Wolsky, A. M. (2002). The status and prospects for flywheels and SMES that incorporate HTS. Physica C: Superconductivity, 372–376, 1495–1499.
https://doi.org/10.1016/S0921-4534(02)01057-2
14. Akhil, A., Swaminathan, S., & Sen, R. K. (1997).Cost analysis of energy storage systems for electric utility applications.
https://doi.org/10.2172/453759
15. Ctratehichno vazhlyvi ob’iekty dlia enerhetyky ta svitu. HES ta HaES. (n.d.). Retrieved July22, 2022, from:
https://uhe.gov.ua/media_tsentr/novyny /strategichno-vazhlivi-obekti-dlya-energetiki-ta-ekonomiki-naybilshi-gaes-svitu
16. Dnistrovska HaES. Zapus ahrehativ. (n.d.). Retrieved July22, 2022, from:
https://web.archive.org/web/20210817132640/https://www.ukrinform.ua/rubric-economy/3299147-na-dnistrovskij-gaes-zapustili-cetvertij-agregat.html
17. Shelest, M. B., & Haida, P. I (2014). Osnovy budovy ta ekspluatatsii akumuliatornykh batarei : navch. posib. Sum. derzh. un-t
18. The International Renewable Energy Agency(IRENA). (n.d.) Retrieved July22, 2022, from:
http://www.irena.org/publications/2016/Sep/Innovation-OutlookRenewable-mini-grids.
19. Skorokhoda, V.V., & Solonina, Yu.M. (2015). Voden v alternatyvnii enerhetytsi ta novitnikh tekhnolohiiakh. Vydavnytstvo «KIM».
20. Vodneva enerhetyka: chomu pro nei tak bahato hovoriat i do choho tut Ukraina. (n.d.). Retrieved July 22, 2022, from:
https://ucap.io/vodneva-energetyka-chomu-pro-neyi-tak-bagato-govoryat-i-do-chogo-tut-ukrayina/