№72-04

Mathematical simulation of rock mass destruction zones by explosion

M. Kononenko1, O. Khomenko1, I. Sadovenko1, V. Sobolev1

1 Dnipro University of Technology, Dnipro, Ukraine 

Coll.res.pap.nat.min.univ. 2023, 72:40-52

https://doi.org/10.33271/crpnmu/72.040

Full text (PDF)

ABSTRACT

Purpose. Improving the parameters of the rock mass destruction zones by a blasting, depending on the pressure of the explosion products in the charging cavity and the physical and mechanical properties of rocks by combining analytical and numerical mathematical simulation.

The methodology of research. Using the theory of elasticity and the main provisions of the quasi-static wave hypothesis of the mechanism of destruction of a solid medium under the action of an explosion, an analytical simulation of the parameters of the formation of crush zones and grinding of a rock mass around the charging cavity under its explosive load was carried out. After the change in the stress-strain state of the massif under the action of the explosion, numerical simulation of the crushing zones, intensive grinding and cracking by the finite element method was carried out. To establish the suitability of the obtained analytical models for calculating the radii of the indicated zones, the results of analytical and numerical simulation were compared.

Findings. Analytical models have been developed for the radii of the zones of crushing, intense grinding and cracking, which are formed around the charging cavity in the rock mass under its explosive load, taking into account the pressure of the explosion products, the tensile-compressive strength of the rocks, their structural structure, and fracturing. Numerical simulation of the destruction of rocks around the charging cavity established the power-law dependences of the change in the radii of the crushing zones and the grinding of the massif depending on the diameter of the charging cavity, the pressure of the explosion products, and the compressive strength of the rocks. By comparing the results of analytical and numerical simulation for rigid boundary conditions of a homogeneous non-fractured massif, the discrepancy between the radii of the indicated zones is found to be 4, 8 and 6%, respectively.

The originality. The radii of the zones of crushing, intense grinding and cracking, established by mathematicalsimulation, formed during the explosive destruction of the rock mass, change according to a power law dependence on the diameter of the explosive charge, the pressure of the explosion products in the charging cavity, the strength of the rocks in tension-compression, the coefficients of the rock structure, structural weakening and compaction, determine the increase in the accuracy of estimating the parameters of the destruction of the rock mass up to 50%.

Practical implications. Based on mathematical models of the radii of the zones of crushing, intense grinding and cracking, which are formed in the rock mass around the charging cavity under the action of an explosion, improved parameters of drilling and blasting operations are determined for mine workings, special-purpose cavities and breaking of the massif.

Keywords: rock mass, drilling and blasting, explosive, charging cavity, rock mass destruction zone.

References

1. Kononenko M., Khomenko O., Kovalenko I., & Savchenko M. (2021). Control of density and velocity of emulsion explosives detonation for ore breaking. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 69-75.
https://doi.org/10.33271/nvngu/2021-2/069

2. Khomenko, O., Kononenko, M., Myronova, I., & Savchenko, M. (2019). Application of the emulsion explosives in the tunnels construction. E3S Web of Conferences, 123, 01039.
https://doi.org/10.1051/e3sconf/201912301039

3. Krysin, R.S., Ishchenko, N.I., Klimenko, V.A., Piven, V.A., & Kuprin, V.P. (2004). Explosive ukranit-PM-1: Equipment and fabrication technology. Gornyi Zhurnal, (8), 32-37.

4. Kholodenko, T., Ustimenko, Y., Pidkamenna, L., & Pavlychenko, A. (2014). Ecological safety of emulsion explosives use at mining enterprises. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 255-260.
http://doi.org/10.1201/b17547-45

5. Myronova, I. (2016). Prediction of contamination level of the atmosphere at influence zone of iron-ore mine. Mining of Mineral Deposits, 10(2), 64-71.
https://doi.org/10.15407/mining10.02.0064

6. Kononenko M., Khomenko O., Myronova I., & Kovalenko I. (2022). Economic and environmental aspects of using mining equipment and emulsion explosives for ore mining. Mining Machines, 40(2), 88-97.
https://doi.org/10.32056/KOMAG2022.2.4

7. Myronova, I. (2015). The level of atmospheric pollution around the iron-ore mine. New Developments In Mining Engineering 2015, 193-197.
https://doi.org/10.1201/b19901-35

8. Kazakov, N.N. (1975). Vzryvnaya otboyka rud skvazhinnymi zaryadami. Nedra.

9. Komir, V.M., Kuznetsov, V.M., Vorob'yev, V.V., & Chebenko, V.N. (1988). Povyshenie effektivnosti deystviya vzryva v tverdoy srede. Nedra.

10. Kononenko M., & Khomenko O. (2021). New theory for the rock mass destruction by blasting. Mining of Mineral Deposits. 15(2), 111-123.
https://doi.org/10.33271/mining15.02.111

11. Esen S., Onederra I., & Bilgin H.A. (2003). Modelling the size of the crushed zone around a blasthole. International Journal of Rock Mechanics & Mining Sciences, (40), 485-495.
https://doi.org/10.1016/s1365-1609(03)00018-2.

12. Torbica, S., & Lapcevic, V. (2014). Rock breakage by explosives. European International Journal of Science and Technology, 3(2), 96-104.

13. Danilenko V.V. (2010). Vzryv: fizika, tekhnika, tekhnologiya. Energoatomizdat.

14. Sobolev, V.V., Kulivar, V.V., Kyrychenko, O.L., Kurliak, А.V., & Balakin, О.O. (2020). Evaluation of blast wave parameters within the near-explosion zone in the process of rock breaking with borehole charges. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 47-52.
https://doi.org/10.33271/nvngu/2020-2/047

15. Erofeev, I.E. (1977). Povyshenie effektivnosti burovzryvnykh rabot na rudnikakh. Nedra.

16. Mosinets, V.N., & Gorbacheva, N.P. (1972). A seismological method of determining the parameters of the zones of deformation of rock by blasting. Soviet Mining Science, 8(6), 640-647.
https://doi.org/10.1007/bf02497586

17. Persson, P. A., Holmberg, R., & Lee, J. (1993). Rock blasting and explosives engineering. Boca Raton, Fla.: CRC Press, 560 p.

18. Torbica, S., & Lapčević, V. (2015). Estimating extent and properties of blast-damaged zone around underground excavations. Rem: Revista Escola de Minas, 68(4), 441-453.
https://doi.org/10.1590/0370-44672015680062

19. Fesik, S.P. (1982). Spravochnik po soprotivleniyu materialov. Budivel'nik.

20. Andrievskii, A.P., Kutuzov, B.N., Matveev, P.F., & Nikolaev, Y.I. (1996). Formation of the blast crater in a rock mass blast-loaded by column charges. Journal of Mining Science, 32(5), 390-394.
https://doi.org/10.1007/bf02046160

21. Kononenko M., Khomenko O., Savchenko M., & Kovalenko I. (2019). Method for calculation of drilling-and-blasting operations parameters for emulsion explosives. Mining Of Mineral Deposits, 13(3), 22-30.
https://doi.org/10.33271/mining13.03.022

22. Khomenko, O., & Kononenko, M. (2019). Geo-energetics of Ukrainian crystalline shield. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 12-21.
https://doi.org/10.29202/nvngu/2019-3/3

23. Belyaev N.M. (1962). Soprotivlenie materialov. Moskva: Fizmatgiz, 856 p.

24. Anistratov Yu.I. (1996). Energeticheskaya teoriya rascheta tekhnologii otkrytykh gornykh rabot. Gornyy informatsionno-analiticheskiy byulleten, (3), 20-29.

25. Pokrovskiy, G.I. (1980). Vzryv. Moskva: Nedra, 190 p.

26. Kononenko M.M., Khomenko O.Ye., & Korobka Ye.O. (2021). Parameters of drilling-and-blasting operations for mine workings constructionFiziko-tehničeskie problemy gornogo proizvodstva, (23), 54-71.
https://doi.org/10.37101/ftpgp23.01.004

27. Kononenko, M., Khomenko, O., & Kosenko, A. (2022). Numerical simulation of the line of least resistanceduring the explosion of charges. Collection of Research Papers of the National Mining University, 69, 43–57. 
https://doi.org/10.33271/crpnmu/69.043

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

489874
Today
This month
Total
62
9442
489874