№72-06

Analysis of the use of composite materials for further application in the support of mine workings

I. Sheka1, I. Salieiev2, M. Shyshov2, O. Malova1, V. Pochepov1, O. Mamaikin1

Dnipro University of Technology,Dnipro, Ukraine

LLC “DTEK Energy”, Kyiv, Ukraine

Coll.res.pap.nat.min.univ. 2023, 72:62-76

https://doi.org/10.33271/crpnmu/72.062

Full text (PDF)

ABSTRACT

PurposeTo analyze composite materials and prospects of their use for roof support in coal mines.

Research methodologyTo achieve this purpose, we used analytical data on the market of composite materials, the volume of their production capacity, and cost indicators. Data on the physical and mechanical properties of composite materials and their quantitative indicators were used.

Research results. The areas of application of composite materials in industry are analyzed and summarized. The analysis shows that composite materials are used in many areas of industry: medicine, construction, defense, etc. A comparative analysis of the physical and mechanical properties of carbon fiber-reinforced plasticand steel shows that this composite material has identical (and sometimes even better) properties than metal materials. The study concluded that it is better to use carbon fiber as a support material for mine workings in coal mines. The advantages and disadvantages of carbon fiber-reinforced plasticas a roofing material for coal mine workings are evaluated. It is clarified that the current limiting factor is the cost of carbon fiber-reinforced plastic, but over time, their price will decrease and their demand will increase. It is concluded that the use of this composite material in the elements of mine support can increase the pace of their implementation, reduce the labor intensity of the work performed and improve the working conditions of miners while lightening the structure.

Scientific novelty. The physical and mechanical properties of composite materials have been analytically determined and it has been substantiated that carbon fiber-reinforced plasticsupports can be used in the support of preparatory workings in coal mines.

Practical value. The obtained results prove that the support made of carbon fiber-reinforced plasticwill facilitate the design of the support, which, together with the acceleration of the shift operation, will contribute to the development of underground coal mining.

Keywords: carbon fiber-reinforced plastic, mine workings, composite material, support, stress-strain state, physical and mechanical properties.

References

1. Bazaluk O, Petlovanyi M, Zubko S, Lozynskyi V. & Sai K. (2021). Instability Assessment of Hanging Wall Rocks during Underground Mining of Iron Ores. Minerals, 11(8):858.
https://doi.org/10.3390/min11080858

2. Fomychov, V., Fomychova, L., Khorolskyi, A., Mamaikin, O., & Pochepov, V. (2020). Determining optimal border parameters to design a reused mine working. ARPN Journal of Engineering and Applied Sciences,15(24), 3039-3049.

3. Bondarenko, V.I., Kovalevska, I.A., Podkopaiev, S.V., Sheka, I.V., & Tsivka, Y.S. (2022). Substantiating arched support made of composite materials (carbon fiber-reinforced plastic) for mine workings in coal mines. IOP Conference Series: Earth and Environmental Science, 1049, 012026
https://doi.org/10.1088/1755-1315/1049/1/012026

4. Bondarenko, V., Kovalevska I., Symanovych, H., Tsivka, Ye., & Sheka, I. (2022). Substantiation of efficiency of use of carbon-fiber reinforcedplastic fasteners for mining products in Western Donbass mines. Collection of Research Papers of the National Mining University, 68, 30–42.
https://doi.org/10.33271/crpnmu/68.030

5. Bazaluk, O., Ashcheulova, O., Mamaikin, O., Khorolskyi, A., Lozynskyi, V., & Saik, P. (2022). Innovative Activities in the Sphere of Mining Process Management. Frontiers in Environmental Science, 304.
https://doi.org/10.3389/fenvs.2022.878977

6. Ashcheulova, O.M., Khorolskyi, A.O., Fomychova, L.Ya., Pochepov, V.M., & Mamaikin, O.R. (2022). Modeli ta metody doslidzhennia vnutrishnikh rezerviv vuhledobuvnykh pidpryiemstv. Monohrafiia. Natsionalnyi tekhnichnyi universytet «Dniprovska politekhnika».

7. Ashcheulova, O.M., Mamaikin, O.R., & Medianyk, V.Yu. (2020). Doslidzhennia skladnykiv vnutrishnoho potentsialu pidpryiemstv hirnychozbahachuvalnoho kompleksu. Problemy systemnoho pidkhodu v ekonomitsi, 76, 202-207.

8. Petlovanyi M.V., Zubko S.A., Popovych V.V., & Sai K.S. (2022). Physico chemical mechanism of structure formation and strengthening in the backfill massif when filling underground cavities. Voprosy Khimii i Khimicheskoi Technologii, 6, 142-150.
https://doi.org/10.32434/0321-4095-2020-133-6-142-150

9. Petlovanyi, M., Malashkevych, D., Sai, K., Bulat, I., & Popovych, V. (2021). Granulometric composition research of mine rocks as a material for backfilling the mined-out area in coal mines. Mining of Mineral Deposits, 15(4), 122-129.
https://doi.org/10.33271/mining15.04.122

10. Kosenko, A.V. (2021). Improvement of sub-level caving mining methods during high-grade iron ore mining. Natsional'nyi Hirnychyi Universytet. Naukovyi Visnyk, (1), 19-25.
https://doi.org/10.33271/nvngu/2021-1/019

11. Sheka, I., & Tsivka, Ye. (2021). Substantination of carbon fiber as an innovative materials for fistening of mining workings of coal mines. Collection of Research Papers of the National Mining University, 64,112–121.
https://doi.org/10.33271/crpnmu/64.112

12. Vydy i oblast zastosuvannia kompozytnykh materialiv (2016). https://www.stroi-baza.ru/articles/one.php?id=5755

13. Liu, J., Wei, X., Gao, L., Tao, J., Xu, L., Peng, G., & Zhou, J. (2023). An overview of C-SiC microwave absorption composites serving in harsh environments. Journal of the European Ceramic Society, 43(4), 1237-1254.
https://doi.org/10.1016/j.jeurceramsoc.2022.11.040

14. Mujalli, M. A., Dirar, S., Mushtaha, E., Hussien, A., & Maksoud, A. (2022). Evaluation of the tensile characteristics and bond behaviour of steel fibre-reinforced concrete: Overview. Fibers, 10(12)
https://doi.org/10.3390/fib10120104

15. Market Research Peport // Fortune Business Insights. (2020). www.fortunebusinessinsights.com

16. Kordsa the reinforcer//A Review of the Global Composites Market and Turkish Composites Market. (n.d.). www.reinforcer.com

17. Umatex//Trendy i draivery v kompozytakh. (2020). www.umatex.com

18. Market Research Peport//Fortune Business Insights. (2020). www.fortunebusinessinsights.com

19. Lazarenko, O.A., Vovchenko, L.L., Ovsiienko, I.V.,& Matsui, L.Yu. (2018). Polimerni kompozyty nanovuhlets-metal: struktura i elektrychni vlastyvosti. Monohrafiia. TOV «TVORY».

20. Kutsevych, K.Ye., Dementieva, L.A., Lukina, N.F., & Tiumeneva, T.Yu. (2018). Adhesive prepregs as promising materials for parts and assemblies from polymeric composite materials. «Aviation Materials and Technologies», 5, 379-387.
https://doi.org/10.18577/2071-9140-2017-0-S-379-387.

21. Miaoxin, L., & Xiaoyu, Z. (2020). Overview of non-destructive testing of composite materials. 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing, WCMEIM 2020, 166-169.
https://doi.org/10.1109/WCMEIM52463.2020.00041

22. Fainleib, O. (2020). Termostiiki polimerni kompozytsiini materialy na osnovi heterotsyklichnykh matryts. Polymer Journal, 2(42), 71-84.

23. Lucherini, A., & Maluk, C. (2019). Intumescent coatings used for the fire-safe design of steel structures: A review. Journal of Constructional Steel Research, 162, 105712.

24. Li, S., Zhang, C., Lu, J., Chen, R., Chen, D., & Cui, G. (2021). A review of progress on high nitrogen austenitic stainless-steel research. Materials Express, 11(12), 1901-1925.

25. Bosak, A. O., & Murza, V. M. (2018). Svitove vyrobnytstvo stali: tendentsii, problemy i rol Ukrainy. Prychornomorski ekonomichni studii, 34, 10-15.

26. Smoliński, A., Malashkevych, D., Petlovanyi, M., Rysbekov, K., Lozynskyi, V., & Sai, K. (2022). Research into impact of leaving waste rocks in the mined-out space on the geomechanical state of the rock mass surrounding the longwall face. Energies, 15(24).
https://doi.org/10.3390/en15249522

27. Li, Y.-F., Chen, W., & Cheng, T.-W. (2022). The Sustainable Composite Materials in Civil and Architectural Engineering. Sustainability, 14(4), 2134.
https://doi.org/10.3390/su14042134

28. Nagavally, R. R. (2017). Composite materials-history, types, fabrication techniques, advantages, and applications. Int. J. Mech. Prod. Eng, 5(9), 82-87.

29. Sheka, I.V. (2022). Kompozyty u hirnychii promyslovosti. Mynule. Sohodennia. Maibutnie. 7-i Mizhnarodnyi molodizhnyi konhres «Stalyi rozvytok: zakhyst navkolyshnoho seredovyshcha. Enerhooshchadnist. Zbalansovane pryrodokorystuvannia», 248

30. Bolf, D., Hadjina, M., Zamarin, A., & Matulja, T. (2021). Methodology for composite materials shrinkage definition for use in shipbuilding and marine technology. Pomorstvo, 35(2), 267-274.
https://doi.org/10.31217/p.35.2.9

31. He, J., Cao, M., Wang, Z., & Cong, F. (2021). Low-speed impact damage analysis of aviation composite material structure. In E3S Web of Conferences (Vol. 260, p. 03021). EDP Sciences.
https://doi.org/10.1051/e3sconf/202126003021

32. Samoilescu, G., Bordianu, A., & Patroi, E. (2019). Use of composite materials in shipbuilding. Utility and necessity. Scientific Bulletin" Mircea cel Batran" Naval Academy, 22(1), 1-5.
https://doi.org/10.21279/1454-864X-19-I1-002

33. Niehaus, H., & Jerling, W. (2006). The Nelson Mandela bridge as an example of the use of composite materials in bridge construction in South Africa. In Composite Construction in Steel and Concrete V (pp. 487-500).
https://doi.org/10.1061/40826(186)46

34. Naidovshyi mist u Yevropi ziednaie Nimechchynu i Daniiu. (n.d.). https://daily.rbc.ua/ukr/show/samyy_dlinnyy_most_v_evrope_soedinit_germaniyu_i_daniyu_050920081

35. Sazrhi, A., Bura, R. O., & Amperiawan, G. (2019). Mastery of Composite Materials to Support Indonesia’s Defense Industry. 6th Asian Conference on Defence Technology (ACDT) (pp. 162-168).
https://doi.org/10.1109/ACDT47198.2019.9072849

36. Johnson, J., & Raja, R. (2020). Recent developments in Al7075 hybrid composites and study on its microstructure and mechanical characteristics. IOP Conference Series: Materials Science and Engineering, 993(1)
https://doi.org/10.1088/1757-899X/993/1/012023

37. Soloviova, T. O. (2018). Vplyv mikrostruktury ta napruzheno-deformovanoho stanu na fizyko-mekhanichni vlastyvosti kompozytiv system LaB6-MeB2-Cu (Al) (dys. kand. tekhn. nauk: 05.16.06) NTU «Kyivskyi politekhnichnyi instytut imeni Ihoria Sikorskoho».

38. Bondarenko, V., Salieiev, I., Sheka, I., & Tsivka, Ye. (2020). Obgruntuvannia vykorystannia kompozytnykh materialiv dlia pidvyshchennia stiikosti hirnychykh vyrobok. Ukrainian School of Mining Engineering 2020, 25–26.
https://doi.org/10.33271/usme14.025

39. Chen, W. T., White, R. M., Goto, T., & Dickey, E. C. (2016). Directionally solidified boride and carbide eutectic ceramics. Journal of the American Ceramic Society, 99(6), 1837-1851.

40. Loboda, P.I., & Bogomol, Y.I. (2002). The thermal stability of the directionally reinforced boride ceramics microstructure. Ceramics, 69, 117-124.

41. Pıhtılı, H., & Tosun, N. (2002). Investigation of the wear behaviour of a glass-fibre-reinforced composite and plain polyester resin. Composites Science and Technology, 62(3), 367-370.

42. Amir, S. M. M., Sultan, M. T. H., Jawaid, M., Ariffin, A. H., Mohd, S., Salleh, K. A. M., ... & Shah, A. U. M. (2019). Nondestructive testing method for Kevlar and natural fiber and their hybrid composites. In Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites (pp. 367-388).

43. Safri, S. N. A., Sultan, M. T. H., Jawaid, M., & Jayakrishna, K. (2018). Impact behaviour of hybrid composites for structural applications: A review. Engineering, 133, 112-121.
https://doi.org/10.1016/j.compositesb.2017.09.008

44. Petlovanyi, M., Malashkevych, D., Sai, K., & Zubko, S. (2022). Conceptual foundations for a non-waste technology development of mining thin coal seams. Scientific papers of DonNTU Series: “The Mining and Geology,” 1(27)-2(28)2022, 7–17.
https://doi.org/10.31474/2073-9575-2022-1(27)-2(28)-7-17

45. Malashkevych, D. S., Petlovanyi, M. V., Sai, K. S., & Kozii, Y. S. (2020). Quantitative and qualitative assessment of coal reserves as an important stage their selective mining justification. Scientific Notes of Taurida National V.I. Vernadsky University. Series: Technical Sciences, 5. https://doi.org/10.32838/2663-5941/2020.5/26

46. Malashkevych, D., Petlovanyi, M., Postol, N., & Postol, M. (2020). Analysis of the mined coal quality and ways of enhancement it in the Western Donbas mines. Collection of Research Papers of the National Mining University, 62, 53–64.
https://doi.org/10.33271/crpnmu/62.053

47. Kovalevska, I., Pilecki, Z., Husiev, O., & Snihur, V. (2019). Assessment of the mutual influence of deformation-strength characteristics of the fastening system elements. E3S Web of Conferences, 123.
https://doi.org/10.1051/e3sconf/201912301006

48. Liashenko, V. I., & Stoliarov, V. F. (2022). Prospects for the Potential of Underground Coal Mining in after War Strengthening the Defense Capability of the State. Economic Herald of the Donbas, (2 (68)), 124-130.
https://doi.org/10.12958/1817-3772-2022-2(68)-124-130

49. Dubovyk, O. I. (2020). Stan i perspektyvy rozvytku vuhilnoi promyslovosti Ukrainy. Perspektyvy rozvytku budivelnykh tekhnolohii: 14-a mizhnarodna naukovo-praktychna konferentsiia molodykh uchenykh, aspirantiv ta studentiv, 33-37.

50. Bondarenko, V.I., Sheka, I.V., Tsivka, Ye.S., & Kovalevska, I.A. (2021). Arochne piddatlyve kriplennia (Patent № 148329 na korysnu model, Ukraina, MPK E21D 11/14. №u2020 08107; opubl. 28.07.2021, Biul. №30)

51. Tsivka, Ye.S., Bondarenko, V.I., Kovalevska, I.A., & Sheka, I.V. (2021). Arochne kriplennia (Patent na korysnu model № 148395, Ukraina, MPK E21D 11/14 (2006.01),№ u2020 08272; Opubl. 04.08.2021; Biul. № 31) 

52. Bondarenko, V., Kovalevska, I., Sheka, I & Sachko, R. (2023). Results of research on the stability of mine workings, fixed by arched supports made of composite materials, in the conditions of the Pokrovske Mine Administration. IOP Conference Series: Earth and Environmental Science, 1149
https://doi.org/10.1088/1755-1315/1149/1/012026

53. Bondarenko, V., Sheka, I., & Tsivka, Ye. (2020). Rozrobka innovatsiinoho vydu kriplennia iz kompozytnykh materialiv dlia hirnychykh vyrobok vuhilnykh shakht.Ukrainian School of Mining Engineering 2021, 59–63.
https://doi.org/10.33271/usme15.059

54. Snihur, V., Bondarenko, V., Shaikhlislamova, I., Kovalevska, I., & Husiev, O. (2022). Optimization solution substantiation for resource-saving maintenance of workings. Mining of Mineral Deposits, 16(1), 9-18.
https://doi.org/10.33271/mining16.01.009

55. Bazaluk, O., Rysbekov, K., Nurpeisova, M., Lozynskyi, V., Kyrgizbayeva, G., & Turumbetov, T. (2022). Integrated monitoring for the rock mass state during large-scale subsoil development. Frontiers in Environmental Science, 10
https://doi.org/10.3389/fenvs.2022.852591

56. Kononenko, M., & Khomenko, O. (2021). New theory for the rock mass destruction by blasting. Mining of Mineral Deposits, 15(2), 111-123.
https://doi.org/10.33271/mining15.02.111

57. Bondarenko, V., Kovalevska, I., Cawood, F., Husiev, O., Snihur, V., & Jimu, D. (2021). Development and testing of an algorithm for calculating the load on support of mine workings. Mining of Mineral Deposits, 15(1), 1-10.
https://doi.org/10.33271/mining15.01.001

58. Kovalevska, I., Samusia, V., Kolosov, D., Snihur, V., & Pysmenkova, T. (2020). Stability of the overworked slightly metamorphosed massif around mine working. Mining of Mineral Deposits, 14(2), 43-52.
https://doi.org/10.33271/mining14.02.043

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

464541
Today
This month
Total
43
30881
464541