№73-5
Analysis of hydrogen production technologies and prospects of their development in Ukraine
P. Saik1, D. Yankin1
1 Dnipro University of Technology, Dnipro, Ukraine
Coll.res.pap.nat.min.univ. 2023, 73:56-67
https://doi.org/10.33271/crpnmu/73.056
Full text (PDF)
ABSTRACT
Purpose. Systemize domestic and global experience in the implementation of hydrogen energy technologies and assess the possibility of their implementation in the development of solid fossil fuels with substantiation of the stages and quantitative indicators of hydrogen production.
Methods. To achieve the purpose of the work, the authors, based on the analysis of peer-reviewed research literature, summarized the existing technologies of hydrogen energy, and substantiated the methodological toolkit for further research.
Results. Based on the domestic and foreign experience of hydrogen production based on fossil fuels, in particular coal, the possibility of further development of the country's fuel and power complex was assessed. The efficiency of global hydrogen production is estimated. The main areas of hydrogen energy technologies improvement are highlighted: disadvantages and advantages. Quantitative indicators of hydrogen production at gasification technology are given and analyzed. It is noted that the cost of the obtained hydrogen is the lowest with coal gasification technologies ($1.63/kg) and biomass ($1.77/kg), and the highest with water electrolysis using non-traditional energy sources: solar – $5.78/kg and wind – $5.89/kg.
Originality. Сonsists in the systematization and scientific validity of hydrogen production technologies implementation. The main regularities that allow to characterize the efficiency of the hydrogen technologies implementation are highlighted. In particular, due attention is paid to the study of the combustible gases release (СО, H2, СН4) and ballast gas СО2 depending on the temperature regime of the selected hydrogen production technology.
Practical implication. The vectors of the development of the leading energy industry are evaluated. Obtained data on the application of technologies for obtaining water based on solid types of fossil fuels, in particular hard coal. This allows for choosing the optimal direction of their implementation. Technological processes for obtaining hydrogen are described, depending on the raw material and the method of obtaining it. It is proposed to use underground gasification as a promising direction for hydrogen production.
Keywords: hydrogen, hydrogen energy, natural gas, electrolysis, biomass, underground gasification, coal.
References
1. Rosen, M. A., & Koohi-Fayegh, S. (2016). The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy, Ecology and Environment, 1(1), 10-29.
https://doi.org/10.1007/s40974-016-0005-z
2. Makaryan, I. A., Sedov, I. V., Salgansky, E. A., Arutyunov, A. V., & Arutyunov, V. S. (2022). A Comprehensive Review on the Prospects of Using Hydrogen–Methane Blends: Challenges and Opportunities. Energies, 15(6), 2265.
https://doi.org/10.3390/en15062265
3. Hydrogen-powered cars. (n.d.). AccessScience.
https://doi.org/10.1036/1097-8542.yb100255
4. Crivello, J. C., Denys, R. V., Dornheim, M., Felderhoff, M., Grant, D. M., Huot, J., & Yartys, V. A. (2016). Mg-based compounds for hydrogen and energy storage. Applied Physics A, 122, 1-17.
https://doi.org/10.1007/s00339-016-9601-1
5. Hamilton, C. W., Baker, R. T., Staubitz, A., & Manners, I. (2009). B–N compounds for chemical hydrogen storage. Chemical Society Reviews, 38(1), 279-293.
https://doi.org/10.1039/B800312M
6. Chai, S., Zhang, G., Li, G., & Zhang, Y. (2021). Industrial hydrogen production technology and development status in China: a review. Clean Technologies and Environmental Policy, 23(7), 1931-1946.
https://doi.org/10.1007/s10098-021-02089-w
7. Iida, S., & Sakata, K. (2019). Hydrogen technologies and developments in Japan. Clean Energy, 3(2), 105-113.
https://doi.org/10.1093/ce/zkz003
8. The race to develop green hydrogen – a sustainable challenge:(n.d.).https://www.activesustainability.com/renewable-energy/production-green-hydrogen/?_adin=02021864894
9. Zanuda, A. (2021). Zelenyi voden dlia Ukrainy ta svitu: stratehichna perspektyva chy novyi velykyi pshyk. BBC News Ukraina. https://www.bbc.com/ukrainian/features-58722468
10. Voloshyn, M.D., Shestozub, A.B., Chernenko, Ya.M., & Zelenska L.O. (2009). Tekhnolohiia neorhanichnykh rechovyny. Chastyna 1. Tekhnolohiia haziv: navchalnyi posibnyk. Dniprodzerzhynskyi derzhavnyi tekhnichnyi universytet.
11. Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36(3), 307-326.
https://doi.org/10.1016/j.pecs.2009.11.002
12. Fujiwara, S., Kasai, S., Yamauchi, H., Yamada, K., Makino, S., Matsunaga, K., Yoshino, M., Kameda, T., Ogawa, T., Momma, S., & Hoashi, E. (2008). Hydrogen production by high temperature electrolysis with nuclear reactor. Progress in Nuclear Energy, 50(2–6), 422–426.
https://doi.org/10.1016/j.pnucene.2007.11.025
13. Podorvanov, V.V. (2016). Fundamentalni biolohichni problemy vodnevoi enerhetyky. Naukovyi chasopys NPU imeni M. P. Drahomanova, 53, 25-255.
14. Kryshtopa, S., Kryshtopa, L., Hnyp, M., Mykytii, I., Melnyk, V., & Dykun, T. (2019). Doslidzhennia skladu i teploty zghorannia piroliznykh haziv yak palyva dlia konvertovanykh na haz dyzelnykh dvyhuniv naftohazovoho tekhnolohichnoho transportu. Suchasni tekhnolohii v mashynobuduvanni ta transporti, 2(13), 84-94.
https://doi.org/10.36910/automash.v2i13.91
15. Han, L., & Wang, Q. (2021). 6 Hydrogen production from biomass pyrolysis. Hydrogen Production and Energy Transition, 279-302.
https://doi.org/10.1515/9783110596250-014
16. Halysh, V.V., Yashchenko, O.V., & Trembus, I.V. (2022). Kompleksne pereroblennia roslynnoi syrovyny: Kompleksna khimichna pererobka derevyny: navch. posib. KPI im. Ihoria Sikorskoho.
17. Tashcheiev, Y. V., Voitko, S. V., Trofymenko, O. O., Riepkin, O. O., & Kudria, T. S. (2020). Global Trends in the Development of Hydrogen Technologies in Industry. Business Inform, 8(511), 103-114.
https://doi.org/10.32983/2222-4459-2020-8-103-114
18. Saik, P., Dychkovskyi, R., Lozynskyi, V., Falshtynskyi, V., Cabana, E.C., & Hrytsenko, L. (2021). Chemistry of the Gasification of Carbonaceous Raw Material. Materials Science Forum, (1045), 67-78.
https://doi.org/10.4028/www.scientific.net/msf.1045.67
19. Lozynskyi, V., Dychkovskyi, R., Saik, P., & Falshtynskyi, V. (2018). Coal Seam Gasification in Faulting Zones (Heat and Mass Balance Study). Solid State Phenomena, (277), 66-79.
https://doi.org/10.4028/www.scientific.net/SSP.277.66
20. Saik, P., & Berdnyk, M. (2022). Mathematical model and methods for solving heat-transfer problem during underground coal gasification. Mining of Mineral Deposits, 16(2), 87-94.
https://doi.org/10.33271/mining16.02.087
21. Saik, P.B., Falshtynskyi, V.S., Lozynskyi, V.H., Cabana, E.C., Demydov, M.S., & Dychkovskyi, R.O. (2020). Efficiency of underground gas generator in consideration of the reverse mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 39-46.
https://doi.org/10.33271/nvngu/2020-4/039