№74-2
Aspects of the utilization for the technogenic territory of coal enterprises
R. Dychkovskyi1, V. Falshtynskyi1, A. Pererva1, M. Demydov1
1Dnipro University of Technology, Dnipro, Ukraine
Coll.res.pap.nat.min.univ. 2023, 74:19-32
https://doi.org/10.33271/crpnmu/74.019
Full text (PDF)
ABSTRACT
Purpose. To perform an analysis of domestic and world experience in the implementation of technologies for the utilization of man-made territories of closed coal enterprises after the completion of their operation.
Methods. To achieve the purpose, the authors, based on the analysis of scientific research literature concerning the directions of creation the production capacities after the completion of the mines functioning, proposed technologies for the formation of enterprises for the utilization of man-made territories and their further use.
Results. The expediency and regularity of creating mining energy-chemical complexes (MEChC) based on closed coal enterprises for the disposal of pollution, secondary resources and energy in man-made territories is substantiated. This will contribute to the acquisition of ecologically clean land area, the use of underground resources, as well as the production of energy and chemical products that meet the needs of the industrial market.
Originality. Consists in the systematization and scientific justification of the implementation of technologies for the use of man-made space in closed mines. The main regularities of the scientific means of studying the processes of adaptation of such processes in the mechanical preparation, processing, and energy utilization of secondary raw materials as part of the implementation of MEChCto the real conditions of the underground and surface space of the closed coal mining enterprise are highlighted.
Practical implication. Development and establishment of the main technological aspects of the formation of a mining energy-chemical complex with the provision of stable utilization of man-made and energy space of coal mines with the obtaining of usable territories, fuel, technical industrial gases, thermal and electrical energy, and chemical products.
Keywords: energy-chemical complex, mining enterprise, ecologically clean land area, curtailment of production, underground and surface complex.
References
1. Moellerherm, S., Kretschmann, J., Tiganj, J., & Poplawski, M. (2022). Post-mining challenges and knowledge transfer for the Ukrainian coal industry. IOP Conference Series: Earth and Environmental Science, 1(970), 012034.
https://doi.org/10.1088/1755-1315/970/1/012034
2. Makaryan, I. A., Sedov, I. V., Salgansky, E. A., Arutyunov, A. V., & Arutyunov, V. S. (2022). A Comprehensive Review on the Prospects of Using Hydrogen–Methane Blends: Challenges and Opportunities. Energies, 15(6), 2265.
https://doi.org/10.3390/en15062265
3. Polyanska, A., Pazynich, Y., Sabyrova, M., & Verbovska, L. (2023). Directions and prospects of the development of educational services in conditions of energy transformation: the aspect of the coal industry. Polityka Energetyczna – Energy Policy Journal, 26(2), 195–216.
https://doi.org/10.33223/epj/162054
4. Evans, B. W., & Guggenheim, S. (1988). Chapter 8. Talc, pyrophyllite, and related minerals. Hydrous Phyllosilicates, 225–294.
https://doi.org/10.1515/9781501508998-013
5. Sahara, F., Murakami, T., Kobayashi, I., Mihara, M., & Ohi, T. (2008). Modelling for the long-term mechanical and hydraulic behavior of betonite- and cement-based materials considering chemical transitions. Physics and Chemistry of the Earth, Parts A/B/C, 33, S531–S537.
https://doi.org/10.1016/j.pce.2008.10.021
6. Chai, S., Zhang, G., Li, G., & Zhang, Y. (2021). Industrial hydrogen production technology and development status in China: a review. Clean Technologies and Environmental Policy, 23(7), 1931–1946.
https://doi.org/10.1007/s10098-021-02089-w
7. Liventseva, H. (2022). The mineral resources of Ukraine. Ukrgeologia, 1–28.
https://doi.org/10.21028/hl.2022.05.17
8. Polyanska, A., Savchuk, S., Dudek, M., Sala, D., Pazynich, Y., & Cicho, D. (2022). Impact of digital maturity on sustainable develop-ment effects in energy sector in the condition of Industry 4.0. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 97–103.
https://doi.org/10.33271/nvngu/2022-6/097
9. Falshtynskyi, V.S. (2009). Udoskonalennia tekhnolohii sverdlovynnoi pidzemnoi hazyfikatsii vuhillia. Monohrafiia, NHU.
10. Voloshyn, M.D., Shestozub, A.B., Chernenko, Ya.M., & Zelenska, L.O. (2009). Tekhnolohiia neorhanichnykh rechovyny. Chastyna 1. Tekhnolohiia haziv: navchalnyi posibnyk. Dniprodzerzhynskyi derzhavnyi tekhnichnyi universytet.
11. Pivniak, H. H., Beshta, O. S., & Shashenko, O. M. (2010). Tendentsii rozvytku tekhnolohii ta system enerhozberezhennia pry vydobuvanni enerhetychnoi syrovyny. Monohrafiia. Nats. hirn. un-t.
12. Pivniak, H. H., Beshta, O. S., & Pilov, P. I. (2013). Ekonomichni y ekolohichni aspekty kompleksnoi heneratsii ta utylizatsii enerhii v umovakh urbanizovanykh i promyslovykh terytorii. Monohrafiia. Natsionalnyi hirnychyi universytet.
13. Savostianov, O.V. (2016). Metody prohnozu heomekhanichnykh protsesiv dlia vyboru tekhnolohichnykh parametriv vidpratsiuvannia polohykh plastiv, Monohrafiia, NHU.
14. Halysh, V.V., Yashchenko, O.V., & Trembus, I.V. (2022). Kompleksne pereroblennia roslynnoi syrovyny: Kompleksna khimichna pererobka derevyny: navch. posib. KPI im. Ihoria Sikorskoho.
https://doi.org/10.32983/2222-4459-2020-8-103-114
16. Saik, P., Dychkovskyi, R., Lozynskyi, V., Falshtynskyi, V., Cabana, E.C., & Hrytsenko, L. (2021). Chemistry of the Gasification of Carbonaceous Raw Material. Materials Science Forum, (1045), 67–78.
https://doi.org/10.4028/www.scientific.net/msf.1045.67
17. Lozynskyi, V., Dychkovskyi, R., Saik, P., & Falshtynskyi, V. (2018). Coal Seam Gasification in Faulting Zones (Heat and Mass Balance Study). Solid State Phenomena, (277), 66–79.
https://doi.org/10.4028/www.scientific.net/SSP.277.66
18. Saik, P.B., Falshtynskyi, V.S., Lozynskyi, V.H., Cabana, E.C., Demydov, M.S., & Dychkovskyi, R.O. (2020). Efficiency of underground gas generator in consideration of the reverse mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 39–46.
https://doi.org/10.33271/nvngu/2020-4/039
19. Rajan, S. S. S., & Edge, E. A. (1980). Dissolution of granulated low-grade phosphate rocks, phosphate rocks/sulphur (Biosuper), and superphosphate in soil. New Zealand Journal of Agricultural Research, 23(4), 451–456.
https://doi.org/10.1080/00288233.1980.10417868
20. Dychkovskyi, R. (2013). Scientific principles of technologies combina-tion for coal mining in weakly metamorphosed rockmass. Thesis of the scientific degree of the Doctor of the Technique Science.
21. Dychkovskyi, R., Falshtynskyi, V., Ruskykh, V., Cabana, E., & Kosobokov, O. (2018). A modern vision of simulation modelling in mining and near mining activity. E3S Web of Conferences, 60, 00014.
https://doi.org/10.1051/e3sconf/20186000014
22. Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., Dyczko, A., & Cabana, E. (2021). Gas hydrates technologies in the joint concept of geoenergy usage. E3S Web of Conferences, (230), 01023.
https://doi.org/10.1051/e3sconf/202123001023
23. Saik, P., Petlovanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221–231.
https://doi.org/10.4028/www.scientific.net/SSP.277.221
24. Sala, D., & Bieda, B. (2019). Life Cycle Inventory (LCI) Approach Used for Rare Earth Elements (REEs) from Monazite Material, Con-sidering Uncertainty. Lanthanides.
https://doi.org/10.5772/intechopen.80261
25. Pylypenko, H.M., Pylypenko, Yu.I., Dubiei, Yu.V., Solianyk, L.G., Pazynich, Yu.M., Buketov, V., Smolinski, A., & Magdziarczyk, M. (2023). Social capital as a factor of innovative development. Journal of Open Innovation: Technology, Market, and Complexity, 9(3) 100118.
https://doi.org/10.1016/j.joitmc.2023.100118
26. Bondarenko, V.I., Falshtynskyi, V.S., Dychkovskyi, R.O., Tabachenko, M.M., Medianyk, V.Yu., & Ruskykh, V.V. (2008). Sposib pidzemnoi hazyfikatsii (Pat. №35926 UA, MPK(2008.01) E21V43/295, № 200805567; zaiavl. 29.04.2008; opubl. 10.10.2008, biul. №19).
27. Bondarenko, V.I., Falshtynskyi, V.S., Dychkovskyi, R.O., Tabachenko, M.M., Medianyk, V.Yu., & Ruskykh, V.V. (2008). Sposib pidzemnoi hazyfikatsii plastiv tverdoho palyva (Pat. №35731 UA, MPK (2006) E21V 43/25, № 200805265, zaiavl. 22.04.2008, opubl. 10.11.2008 biul. №21).
28. Dychkovskiy, R., & Bondarenko, V. (2006). Methods of Extraction of Thin and Rather Thin Coal Seams in the Works of the Scientists of the Underground Mining Faculty (National Mining University). International Mining Forum 2006, New Technological Solutions in Underground Mining, 21–25.
https://doi.org/10.1201/noe0415401173.ch3
29. Falshtynskyi, V.S., Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B. & Kabana, E. K. (2020). Sposib utylizatsii vidkhodiv pry hazyfikatsii vuhillia. (Pat. №121987, MPK B09B, F23G, F21B, zaiav. 13.11.2017; opubl. 25.08.2020; biul. №16).
30. Dychkovskyi, R.O., Avdiushchenko, A.S., Falshtynskyi, V.S., & Saik, P.B. (2013). On the issue of estimation of the coal mine extraction area economic efficiency. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 107–114.