№74-4

Theoretical foundations of point cloud coordinate system transformation

A. Romanenko1

1 PrivateJoint-StockCompany'CGZK', KryvyiRih, Ukraine

Coll.res.pap.nat.min.univ. 2023, 74:46-57

https://doi.org/10.33271/crpnmu/74.046

Full text (PDF)

ABSTRACT

Purpose. To provide theoretical foundations and develop mathematical models for the efficient transformation of coordinate systems for point clouds in geophysical research; the scientific analysis is aimed at developing algorithms and establishing necessary dependencies for the reliable integration of data obtained at different time points into a unified coordinate system, opening up prospects for further study and analysis of processes in geophysical research.

The methods.The calculation is carried out using the following steps. Determination of known coordinates of four points (x1', y1', z1'; x2', y2', z2'; x3', y3', z3'; x4', y4', z4') in a hypothetical coordinate system (X', Y', Z') and the coordinates of the same points (x1, y1, z1; x2, y2, z2; x3, y3, z3; x4, y4, z4) in the coordinate system (X, Y, Z) to which the point clouds need to be transformed. Determination of constants a1, a2, a3, d, b1, b2, b3, e, c1, c2, c3, f through a system of equations. After determining the constants, the coordinates of points (x', y', z') in the hypothetical coordinate system (X', Y', Z') are calculated using equations where each equation expresses the coordinates of points (x', y', z') in terms of coordinates of points (x, y, z) in the coordinate system (X, Y, Z) and the determined constants. After performing the calculations, point clouds can be merged into a single coordinate system using the computed coordinates (x', y', z'). This methodology allows for the successful transformation of coordinate systems for point clouds in geophysical research.

Findings. Analytical regularities have been established based on known coordinates of four points in both coordinate systems, allowing for the efficient transformation of a point cloud from one coordinate system to another.

The originality. For the first time, precise analytical dependencies have been established that enable the efficient transformation of point clouds from one coordinate system to another using known coordinates of four points in both systems.

Practical implementation. The obtained dependencies enable the efficient transformation of point clouds from one coordinate system to another using known coordinates of four points in both systems.

Keywords: coordinate system transformation, point cloud, geophysical research, analytical dependencies.

References

1. Nakaz Ministerstva ahrarnoi polityky ta prodovolstva Ukrainy «Poriadok vykorystannia Derzhavnoi heodezychnoi referentsnoi systemy koordynat USK-2000 pry zdiisnenni robit iz zemleustroiu» № 509 vid 02.12.2016 r. (2016). https://minagro.gov.ua/npa/nakaz-minagropolitiki-pro-zatverdzhennya-poryadku-vikoristannya-derzhavnoi-geodezichnoi-referentsnoi-sistemi-koordinat-usk-2000-pri-zdiysnenni-robit-iz-zemleustroyu

2. Postanova Kabinetu Ministriv Ukrainy «Deiaki pytannia zastosuvannia heodezychnoi referentnoi systemy koordynat» № 1259 vid 22.09.2004 r. (2004). http://zakon2.rada.gov.ua/laws/show/1259-2004-%D0%BF

3. Postanova Kabinetu Ministriv Ukrainy «Deiaki pytannia realizatsii chastyny pershoi statti 12 Zakonu Ukrainy «Pro topohrafo-heodezychnu i kartohrafichnu diialnist» № 646 vid 07.08.2013 r. (2013). http://zakon3.rada.gov.ua/laws/show/646-2013-%D0%BF

4. Borovyi, V. O., Zarytskyi, O. V., & Kin, D. O. (2017). Tekhnolohiia koordynatnoho peretvorennia ta transformuvannia pry heodezychnykh ta zemlevporiadnykh robotakh. Novitni tekhnolohii, 2, 15–20.

5. Buldyhin, V. V., Alieksieieva, I. V., Haidei, V. O., Dykhovychnyi, O. O., Konovalova, N. R., & Fedorova, L. B. (2011). Liniina alhebra ta analitychna heometriia. (Navch. posibnyk za red. prof. V. V. Buldyhina). TViMS.

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

477202
Today
This month
Total
157
6840
477202