№74-24
Stress-strain state of a composite tractive element with a broken structure due to elastomer shell rheology
I. Belmas1, D. Kolosov2, S. Onyshchenko2, O. Bilous1, H. Tantsura1, P. Chernysh2
1 Dniprovsk State Technical University, Kamianske, Ukraine
2 Dnipro University of Technology, Dnipro, Ukraine
Coll.res.pap.nat.min.univ. 2023, 74:274-287
https://doi.org/10.33271/crpnmu/74.274
Full text (PDF)
ABSTRACT
Purpose. Establishing a dependency of change in a stress-strain state for a rubber-cable tractive element with broken structure due to rheology of a rubber shell.
Methods. Analytical solution of a model of a rubber-cable tractive element with a broken structure due to rheology of a rubber shell.
Results. An algorithm for determining a stress-strain state of a rubber-cable tractive element with a broken structure due to rheology of a rubber shell is developed. The suggested algorithm involves splitting the rope into two parts, which allows considering the influence of a dependency of shear modulus on deformations in a form of a broken line constructed of two segments. Splitting the rope in the area of integrity breakage into three or more parts allows considering a more complex dependency of shear modulus on shear deformations. A mechanism of changing a stress-strain state of a rubber-cable rope due to rheology of a rubber shell is established. The local influence of changes in properties of elastic material interacting with a damaged cable on a stress-strain state of a rubber-cable tractive element with a broken structure is analyzed.
Scientific novelty. A mechanism of influence of a shear modulus of rubber shell material in the rubber-cable rope (belt) with a cable integrity breakage on stress-strain state of composite tractive element is established to be time-varying and nonlinearly dependent on deformations.
Practical significance. Consideration of shell rubber rheology makes it possible to predict a rope stress state considering a non-linear law of changes in properties of rubber during its use and to increase safety and operational reliability of rubber-cable tractive elements. A local change in mechanical parameters does not increase the danger of using a rope with continuity breakages of cables. An increase in lengths of redistribution of forces and displacements requires an increase in length of steps in butt-joint connections.
Keywords: mechanical properties of rubber, stress-strain state, composite tractive element,stay rope, rope damage, rubber shell rheology, broken rope structure, cable continuity breakage.
References
1. Fedorko, G., Molnár, V., Michalik, P., Dovica, M., Tóth, T., & Kelemenová, T. (2016). Extension of inner structures of textile rubber conveyor belt – Failure analysis. Engineering Failure Analysis, 70, 22–30.
https://doi.org/10.1016/j.engfailanal.2016.07.006
2. Bajda, M., Błażej, R., & Hardygóra, M. (2016). Impact of Selected Parameters on the Fatigue Strength of Splices on Multiply Textile Conveyor Belts. IOP Conference Series: Earth and Environmental Science, 44, 052021.
https://doi.org/10.1088/1755-1315/44/5/052021
3. Blazej, R., Jurdziak, L., Burduk, R., Kirjanow, A., & Kozlowski, T. (2017). Analysis of core failure distribution in steel cord belts on the cross-section. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 17(13), 987-994.
https://doi.org/10.5593/sgem2017/13/S03.125
4. Grincova, A., Andrejiova, M., & Marasova, D. (2016). Failure analysis of conveyor belt in terms of impact loading by means of the damping coefficient. Engineering Failure Analysis, 68, 210–221.
https://doi.org/10.1016/j.engfailanal.2016.06.006
5. Marasová, D., Ambriško, Ľ., Andrejiová, M., & Grinčová, A. (2017). Examination of the process of damaging the top covering layer of a conveyor belt applying the FEM. Measurement, 112, 47–52.
https://doi.org/10.1016/j.measurement.2017.08.016
6. Kolosov, L.V., & Belmas, I.V. (1981). Primenenie elektricheskikh modelei dlya issledovaniya kompozitnikh materialov. Mekhanika kompozitnikh materialov, 1. 115–119.
7. Darіya Zade S. (2013). Chislennaya metodika opredeleniya effektivnykh kharakteristik odnonapravleno armirovannykh kompozitov. Bulletin NTU “KhPІ”, (58), 71-77.
8. Mei, X., Miao, C., Yang, Y., & Li, X.(2016). Automatic detection method for mine conveyor belt surface damage. Meitan Xuebao/Journal of the China Coal Society, 41, 259–265.
https://doi.org/10.13225/j.cnki.jccs.2015.1182
9. Volokhovskiy, V.Yu., Radin, V.P., & Rudyak, M.B. (2010). Kontsentratsiya usiliy v trosakh i nesushchaya sposobnost' rezinotrosovykh konveyernykh lent s povrezhdeniyami. MEI Bulletin, (5), 5–12.
10. Bel'mas, I.V. (1993). Stress state of rubber-rope tapes during their random damages. Problemy Prochnosti i Nadezhnos'ti Mashin, (6), 45–48.
11. Belmas, I., Kolosov, D., Chechel, T., Vorobiova, O., & Chernysh, O. (2020). Influence of change during the mechanical properties of rubber on the stressed state of a rubber traction body with a damaged cable. Collection of Research Papers of the National Mining University, 62, 149–155.
https://doi.org/10.33271/crpnmu/62.149
12. Song, W., Shang, W., & Li, X. (2009). Finite element analysis of steel cord conveyor belt splice. ET Conference Publications, 2009(556).
https://doi.org/10.1049/cp.2009.1415
13. Belmas, I.V., & Bobylova, I.T. (2012). Vplyv poryviv trosiv na mitsnist ploskoho tiahovoho orhanu. Recueil des exposes des participants de VI Conference internationale scientifigue et methodigeue du 11-18 jctobre 2012 sur l’le de Djerba (Tunise) Donetsk, 88–91.
14. Kolosov, L.V., & Belmas,I.V. (1990).Issledovanie mekhanicheskikh kharakteristik metallotrosov. Izvestiyavuzov. Gornii zhurnal, 9, 81–83.
15. Kolosov, L.V., & Belmas, I.V. (1990). Issledovanie prochnostnikh kharakteristik obraztsov povrezhdennikh rezinotrosovikh lent. Izvestiya vuzov. Gornii zhurnal, 8, 81–84.
16. Kolosov, L.V., & Belmas, I.V. (1991). Eksperimentalnie issledovaniya agregatnoi prochnosti RTL. Izvestiya vuzov. Gornii zhurnal, 1, 85–87.
17. Ropai, V.A. (2016). Shakhtnie uravnoveshivayushchie kanati: monografiya. Natsionalnii gornii universitet.
18. Belmas, I.V., Kolosov, D.L., Bilous, O.I., & Bobylova, I.T. (2019). Doslidzhennia napruzhenoho stanu hnuchkoho tiahovoho orhanu z kinematychnym zv’iazkom. Zbirnyk naukovykh prats VIII Mizhnarodnoi naukovo-tekhnichnoi konferentsii «Prohresyvni tekhnolohii v mashynobuduvanni RTME 2019» 4-8 liutoho 2019r. Ivano-Frankivsk – Yaremche, 72–73.
19. Kolosov, L.V., & Belmas, I.V. (1990). Analiz skhem stikovikh soedinenii rezinotrosovikh lent. Izvestiya vuzov. Gornii zhurnal, 2, 83–85.
20. Levchenya, Zh.B. (2004). Povyshenie nadezhnosti stykovykh soedineniy konveyernykh lent na gornodobyvayushchikh predpriyatiyakh: Na primere RUP "PO "Belaruskaliy" Ph.D. MGOU.
21. Tantsura, H.I. (2010). Hnuchki tiahovi orhany. Stykovi z’iednannia konveiernykh strichok. Monohrafiia. DDTU.
22. Kolosov, L.V., & Belmas, I.V. (1991). Napryazheno-deformirovannoe sostoyanie rezino-trosovoi lenti s iskrivlennimi trosami. Izvestiya Vuzov. Gornii zhurnal, 7, 65–69.
23. Kolosov, L.V., Belmas, I.V., & Kiba, V.Ya. (1991). Vliyanie iskrivlenii trosov rezinotrosovoi lenti na yee prochnost. Gornaya elektromenika i avtomatika, 59.
24. Ropai, V., & Belmas, I. (1990). Issledovanie napryazhenno-deformirovannogo sostoyaniya rezinotrosovoi lenti transporternogo konveiera. Zeszyty naukowe Polltechnlkl Slaskiej. Seria: Gornlctwo, 182, 113–118.
25. Belmas, I.V., & Kolosov, L.D. (2008). Rozpodil zusyl v prychepnomu prystroi ploskoho tiahovoho orhanu. Matematychne modeliuvannia. Naukovyi zhurnal, 1(18), 33–35.
26. Belmas, I.V., Saburova, I.T., & Konokh, Yu.V. (2009).Napruzhennia v obolontsi ploskoho kanata na vykonavchomu orhani pidiomno-transportnoi mashyny. Pidiomno-transportna tekhnika. Naukovyi zhurnal, 4.
27. Belmas, I.V, Kolosov, D.L., Daniiarov, N.A., Tantsura A.I., & Karsakova, A.Zh. (2013). Napryazhennoe sostoyanie ploskoi rezinotrosovoi lenti na barabane podemno-transportnoi mashini. Universitetyenbekterі. Trudi universiteta, 3, 75–77.
28. Belmas, I.V., Kolosov, D.L., & Kolosov, O.L. (2014). Issledovanie napryazhenno-deformirovannogo sostoyaniya rezinotrosovogo kanata na uchastke perekhoda k trubchatoi forme. Vestnik PNIPU.Geologiya. Neftegazovoe i gornoe delo, 12, 48–55
29. Belmas,I., Kolosov,D., Dolgov,O., & Tantsura,G. (2017). The stress-strain state of the flat rope of hoisting engine with considering their technical state. Innovations in science and education: challenges of our tame. Collection jf scientific papers. 191–196.
30. Belmas, I.V., Kolosov, D.L., & Bilous, O.I. (2018). Vzaiemodiia humotrosovoho kanata z pryvodnym barabanom. Zbirnyk naukovykh prats Dniprovskoho derzhavnoho tekhnichnoho universytetu (tekhnichni nauky), Tematychnyi vypusk. Mashyny i plastychna deformatsiia metalu, 168–173.
31. Belmas, I.V., Bilous, O.I., & Konokh, Yu.M. (2010). Deformuvannia stupinchatoho kanata na shkivi pidiomnoi mashyny. Metallurgicheskaya i gornorudnaya promishlennost, 3, 109–112.
32. Belmas, I.V., Kolosov, D.L., & Bobylova, I.T. (2009). Vrakhuvannia dotychnykh napruzhen pry avtomatyzovanomu konstruiuvannia stupinchastoho kanata. Stalnie kanati. Sbornik nauchnikh trudov, 7, 147–152.
33. Belmas, I.V., Blokhin, S.E., & Kolosov, D.L. (2010). Napryazhenno-deformirovannoe sostoyanie tyagovogo organa stupenchatoi konstruktsii v bobinnoi namotke. Stalnie kanati. Sbornik nauchnikh statei, 71–78.