№74-25

Stress-strain state of a multi-layerstay rope with a cable breakage in cross-section of connection to structure

D. Kolosov1, O. Dolgov1, S. Onyshchenko1, O. Bilous2, H. Tantsura2

1 Dnipro University of Technology, Dnipro, Ukraine

2 Dniprovsk State Technical University, Kamianske, Ukraine

Coll.res.pap.nat.min.univ. 2023, 74:288-295

https://doi.org/10.33271/crpnmu/74.288

Full text (PDF)

ABSTRACT

Purpose. Development of a calculation method for a stress-strain state of a multi-layer stay rope with a damaged cable in a cross-section of connection to a structure.

Methods. Solution of a well-known model of interaction of parallel cables connected through an elastic material for a case of continuity breakage of one cable in a cross-section of connection to a structure. The calculation method is analytical and based on principles of mechanics of an elastic body. The obtained results, within the limits of linear formulation, can be considered sufficiently reliable.

Findings. A calculation method for a stress-strain state of a multi-layer stay rope with a damaged cable is developed. It is established that continuity breakage of one cable leads to a significant change in internal loads on just the cables adjacent to the damaged one. Larger changes in the maximum cable loads occur in a case of continuity breakage of the corner cable, the smallest changes occur in a case of breakage in the central cable. Characters of a dependency of cable load coefficients on their number in a rope with a damaged corner and central cable coincide qualitatively.The condition of strength for a multi-layered stay rope with a damaged cable is formulated. A dependency of maximum load coefficients of stay rope cables with a damaged central and corner cable on a number of layers of cables and cables in layers is established.

Originality. An analytical algorithm for calculating a stress-strain state of a multi-layer tractive element with comprehensive consideration of its design, mechanical properties of its components with a damaged arbitrary cable is developed.

Practical significance. The developed method makes it possible to evaluate the influenceof arbitrary cable breakageon tractivecapacity of astay ropeand to considerit in the design process, which increasesreliability of acapital structure, including acable-stayed bridge. The developed method of determining the indicators of astress-strain state of a stayrope and linear formulation of the problem make it possible to determine astress state when one cable slips at aconnection deviceto astructure by proportional addition of twostressstates.

Keywords: multi-layer stay rope, stress-strain state, cable breakage, cross-section of connection to a structure.

References

1. Volokhovskii, V.Yu., Radin, V.P., & Rudyak, M.B. (2010). Kontsentratsiya usilii v trosakh i nesushchaya sposobnost rezinotrosovikh konveiernikh lent s povrezhdeniyami. Vestnik MEI, 5, 5–12.

2. Ropai, V.A. (2016). Shakhtnie uravnoveshivayushchie kanati: monografiya. Natsionalnii gornii universitet.

3. Belmas, I., & Kolosov, D. (2011). The stress-strain state of the stepped rubber-rope cable in bobbin of winding. Technical and Geoinformational Systems in Mining, 211–214.
https://doi.org/10.1201/b11586-35

4. Bondar, N.V. (2019). Mitsnist aviatsiinykh obolonok iz kompozytiv z urakhuvanniam robochoho seredovyshcha ta ekspluatatsiinoho poshkodzhennia: dys. kand. tekhn. nauk: 05.07.02. Natsionalnyi aviatsiinyi universytet.

5. Lepikhin, P.P., & Romashchenko, V.O. (2013). Metody ta rezultaty analizu napruzheno-deformovanoho stanu ta mitsnosti bahatosharovykh tovstostinnykh anizotropnykh tsylindriv pry dynamichnomu navantazhenni (ohliad). Povidomlennia 3. Fenomenolohichni kryterii mitsnosti. Problemy mitsnosti, 3, 24–41.

6. Cho, J. R., Yoon, Y. H., Seo, C. W., & Kim, Y. G. (2015). Fatigue life assessment of fabric braided composite rubber hose in complicated large deformation cyclic motion. Finite Elements in Analysis and Design, 100, 65–76.
https://doi.org/10.1016/j.finel.2015.03.002

7. Kwak, S.-B., & Choi, N.-S. (2009). Micro-damage formation of a rubber hose assembly for automotive hydraulic brakes under a durability test. Engineering Failure Analysis, 16(4), 1262–1269.
https://doi.org/10.1016/j.engfailanal.2008.08.009

8. Larin O.O. (2016). Prohnozuvannia nadiinosti humo-kordnykh vysokonapirnykh muft truboprovodiv. Visnyk Khmelnytskoho natsionalnoho universytetu, 4 (239), 40-46.

9. Belmas, I., Kolosov, D., Bilous, O., & Onyshchenko, S. (2018). Stress-strain state of а conveyor belt with cables of different rigidity and their breakages. Fundamental and applied researches in practice of leading scientific schools, 26(2), 231–238.

10. Tantsura, H.I. (2010). Hnuchki tiahovi orhany. Stykovi z’iednannia konveiernykh strichok. DDTU.

11. Belmas, I., Bilous, O., Tantsura, H., Sai, O., & Hupalo, Yu. (2022). Vplyv poryvu trosa na napruzhenyi stan humotrosovoho vantovoho kanatu. Komp’iuterno-intehrovani tekhnolohii: osvita, nauka, vyrobnytstvo, (48), 42–52.
https://doi.org/10.36910/6775-2524-0560-2022-48-07

12. Belmas, I., Kolosov, D., Onyshchenko, S., Bilous, O., Tantsura, H., & Chernysh, P. (2022). Stress-strain state of composite rope considering influence of its nonlinear deformation and reinforcement element breakage. Collection of Research Papers of the National Mining University, 70, 99–106.
https://doi.org/10.33271/crpnmu/70.099

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

477202
Today
This month
Total
157
6840
477202