№75-6

A virtual device for computer simulation of stresses in the area of blade-chip contact

S. Patsera1, V. Derbaba1, V. Ruban1, S. Dubrovskyi2

1Dnipro University of Technology,Dnipro, Ukraine

2«Dnipro Technological University «STEP»», Dnipro, Ukraine

Coll.res.pap.nat.min.univ. 2023, 75:64-73

https://doi.org/10.33271/crpnmu/75.064

Full text (PDF)

ABSTRACT

PurposeIn modernconditions of training qualified specialists to work in the machine-building industry, there is a need for remote tools for stress research. that arise during the machining of mechanical engineering products. Therefore, the purpose of this work is to create a suitable virtual device.

The methods. The research method includes the analysis of known analytical dependencies, the classification of process parameters into adequate input data and functional arguments, and, finally, the construction of a digitized computational algorithm. The software implementation of the created virtual tool was carried out in the NI LabWIEV 7.1 environment. The choice of this software product is based on the following positive methodological features, such as: a powerful tool for creating graphical programs that represent virtual instruments, convenient tools for developing complex experimental stands, automation and control systems, process modeling and other tasks facing modern science, ease of use due to the graphical interface, the ability to create modular programs, support for a variety of hardware and platforms, as well as a wide range of.

Findings. The values of normal and tangential stresses in the chip-blade contact zone calculated with the help of a virtual device coincide well with the previously published data.

The originality. Considering the accepted restrictions on the intervals of the values of the parameters of the machining processes of steel 45 and steel Cr18N10T, graphs of dependence of normal and tangential stresses on the length of contact of chips with the blade are established.

Practical implementation. The created virtual device for computer modelling of stresses in the contact zone of the blade with chips has been successfully implemented in the educational process for master’s and postgraduate students in the specialty 131 Applied Mechanics.

Keywords: metal cutting, computer experiment, LabVIEW.

References

1. Malakizadia, A., Oberbeck, J.N., Magnevall, M., & Krajnik, P. (2019). A new constitutive model for cutting simulation of 316L austenitic stainless steel. 17th CIRP Conference on Modelling of Machining Operations. Procedia CIRP, 82, 53–58.
https://doi.org/10.1016/j.procir.2019.04.064

2. Xiaolei, H., Zhiqiang, S., Xuanzhen, C., Shan, P., Yong, P., & Ping, X. (2019). Investigation on the mechanical behavior and constitu-tive model of 45 steel used in planing energy-absorbing structure at high strain rate and high tempe-rature. Journal of Rail Way Science and Engineering, 16(1), 215–222. https://www.webofscience.com/wos/alldb/full-record/CSCD:6464931

3. Saleem, W., Ijaz, H., Alzahrani, A., & Zhang, J. (2019). Numerical modelling and simulation of macro- to microscale chip considering size effect for optimum milling characteristics of AA2024T351.Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(8).
https://doi.org/10.1007/s40430-019-1838-0

4. Denkena, B., Kroedel, A., Ellersiek, L., & Zender, F. (2021). Modelling of process Forces for Complex multiaxial Turning Processes. MM Science Journal, Special Issue HSM 2021 16th International Conference on High Speed Machining, 5023–5029.
https://doi.org/10.17973/MMSJ.2021_11_2021147

5. Pop, A. B., Sandu, A. V., Sachelarie, A., & Țîțu, M. A. (2021). Studying the Behavior of the C45 Material when Changing the Tool Geometry Using the Finite Element Method. Archives of Metallurgy and Materials, 653–659.
https://doi.org/10.24425/amm.2022.137802

6. Kuruc, M., Vopat, T., Peterka, J., Necpal, M., Simna, V., Milde, J., & Jurina, F. (2022). The Influence of Cutting Parameters on Plastic Deformation and Chip Compression during the Turning of C45 Medium Carbon Steel and 62SiMnCr4 Tool Steel. Materials, 15(2), 585.
https://doi.org/10.3390/ma15020585

7. Ribeiro-Carvalho, S., Lauro, C.H., Horovistiz, A., & Davim, J.P. (2022). Development of FEM-based digital twins for machining difficult-to-cut materials: A roadmap for sustainability. Journal of Manufacturing Processes,75, 739–766.
https://doi.org/10.1016/j.jmapro.2022.01.027

8. Storchak, M., Drewle, K., Menze, Ch., Stehle, T., & Möhring, H-C. (2022). Determination of the Tool-Chip Contact Length for the Cutting Processes. Materials, 15(9), 3264.
https://doi.org/10.3390/ma15093264

9. Afrasiabi, M., Saelzer, J., Berger, S., Iovkov, I., Klippel, H., Röthlin, M., Zabel, A., Biermann, D., & Wegener, K. (2021). A Numerical-Experimental Study on Orthogonal Cutting of AISI 1045 Steel and Ti6Al4V Alloy: SPH and FEM Modelling with Newly Identified Friction Coefficients. Metals, 11, 1683.
https://doi.org/10.3390/met11111683

10. Kravchenko, Yu.H., & Patsera, S.T. (2021). Rozpodil napruzhen na plastychno-pruzhnomu kontakti struzhka-lezo. Zbirnyk naukovykh prats NHU, 66, 140–152.
https://doi.org/10.33271/crpnmu/66.140

11. NI’s Software Bundle for Engineers in Research, Validation, and Production. (n.d.). https://www.ni.com/en/shop/electronic-test-instrumentation/what-is-test-workflow.html

12. Derbaba, V.F. (2013). Modelirovanie vlijanija pogreshnostej izmerenija obshhih normalej zub'ev na pokazateli razbrakovki. Vostochno-Evropejskij zhurnal peredovyh tehnologij, 6(4(66)),48–52.

13. Patsera, S.T., Korsun, V.I., Derbaba, V.F., & Ruzhyn P.O. (2016). Alhorytm imitatsiino-statystychnoho doslidzhennia kontrolno-vymiriuvalnoi systemy ta yoho prohramna realizatsiia u Ni LabVIEW. Systemy obrobky informatsii.Metrolohiia”, 6(143). 116–119. http://www.hups.mil.gov.ua/periodic-app/article/16731

14. Bohdanov, О., Protsiv, V., Derbaba, V. & Patsera, S. (2020). Model of surface roughness in turning of shafts of traction motors of electric cars. «Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu», 1, 41–45
https://doi.org/10.33271/nvngu/2020-1/041

15. Mazur, M.P., Vnukov, Yu.M., Dobroskok, V.L., Zaloha, V.O.,  Novosolov, Yu.K., & Yakubov, F.Ia. (2011). Osnovy teorii rizannia materialiv. 2-e vyd. pererob. i dop. Novyi svit-2000. https://xn--e1ajqk.kiev.ua/wp-content/uploads/2019/12/Mazur-M.-P.-Osnova-teori-rizпотовщенняannya-meterialiv.pdf

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

489876
Today
This month
Total
64
9444
489876