№75-21
Stress stateofa composite tractive element with cable rigidity variable over length considering bending on a drum with curved generatrix
D. Kolosov1, O. Bilous2, H. Tantsura2, S. Onyshchenko1, Y. Kovalova1, P. Chernysh1
1 Dnipro University of Technology, Dnipro, Ukraine
2 Dniprovsk State Technical University, Kamianske, Ukraine
Coll.res.pap.nat.min.univ. 2023, 75:214-224
https://doi.org/10.33271/crpnmu/75.214
Full text (PDF)
ABSTRACT
Purpose. Establishment of dependencies for parameters of a stress-strain state of a composite tractive element taking into account bending of a rope with cable rigidity variable over length on a drum with a curved generatrix.
Research methodology. Development of a method for calculating the influence of a complex of factors on a stress-strain state of a rope by constructing and solving a model of a stress-strain state of a composite tractive element with cable tensile rigidity variable over length, cable base breakages and a non-cylindrical drum shape, using the methods of mechanics of layered composite materials with soft and hard layers.
Findings. Analytical dependencies are obtained in a closed form and allow determining the maximum quantitative indicators of a stress-strain state of a rope of a combined structure with a broken cable, rigidity different from the main cables and variable along rope length in a straight rope part and in a part of interaction with a curved drum of a hoisting machine.
Analytical dependencies are established for determining the maximum angles of rubber shear between cables, which allows determining the dangerous tangential stresses in a tractive element for cases of flat rope tension, rope bending on a convex drum, and bending on a convex drum of a rope with cables of reduced tensile rigidity.
The results of solving the problem of determining the distribution of forces in a rope with cables of different rigidity by the developed method absolutely coincide with the only possible distribution of forces in a sample of three cables, which allows considering the developed algorithm reliable to describe the mechanism of redistribution of forces between cables with different tensile rigidity, including in the event of cable breakage, and the obtained results are reliable.
Scientific novelty. A method of calculating the influence of a complex of factors on a stress-strain state of a rope is developed. The dependencies of parameters of a stress-strain state of a composite tractive element are established, taking into account rope bending, which has cable base breakages and cable rigidity variable over length, on a drum with a curved generatrix.
Practical significance. A method for determining the indicators of a stress-strain state of a composite tractive element, which has cable base breakages and cable rigidity variable over length, including for bending on a non-cylindrical drum, is developed. This makes it possible to increase the operational safety of a composite tractive element in hoisting and transporting machines, in particular at significant hoisting heights, and also contributes to justifying the use of a rope design as a stay rope in capital structures.
Keywords: composite tractive element, stress-strain state, mathematical model, rigidity variable over length, bending on drum, curved drum generatrix, cable displacement, force distribution coefficient, rubber shear angle.
References
1. Belmas, I. V., Bilous, O. I., Nelha, A. T., & Belmas, O. L. (2008). Kontrol trosiv humotrosovoho kanatu. Materialy chetvertoi mizhnarodnoi naukovo-praktychnoi konferentsii «Naukovi doslidzhennia – teoriia ta eksperyment – 2008», 8, 8–12.
2. Belmas, I. V., Saburova, I. T., & Zadorozhna, I. M. (2008). Uperedzhennia ruinuvannia tiahovoho orhanu krutopokhyloho pidiimacha. Zbirnyk naukovykh prats Kerchenskoho morskoho tekhnolohichnoho instytutu. Mekhanizatsiia vyrobnychykh protsesiv rybnoho hospodarstva, promyslovykh ta ahrarnykh pidpryiemstv, 9, 132–136.
3. Blokhin, S. E., Kolosov, D. L., & Kolosov A. L. (2009). Napruzheno-deformovanyi stan ploskoho humotrosovoho tiahovoho orhana na barabani. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu im. akad. V. Lazariana, 30, 88–91.
4. Bilous, O. I., & Kolosov, D. L. (2010). Napruzhenyi stan humovoi obolonky kanatu na barabani konveiera podachi shykhty v domennu pich. Metallurgicheskaya i gornorudnaya promishlennost, 4(262). 113–114.
5. Kolosov, D. L., Bilous, O. I., & Tantsura, H. I. (2012). Model ta vyznachennia NDS humotrosovoho kanatu, stysnutoho zhorstkymy ploskymy plytamy. Zbirnyk naukovykh prats Kerchenskoho derzhavnoho morskoho tekhnolohichnoho universytetu ta dniprodzerzhynskoho derzhavnoho tekhnichnoho universytetu, 13, 64–68.
6. Kolosov, L. V. (1987). Nauchnie osnovi razrabotki i primeneniya rezinotrosovikh kanatov podemnikh ustanovok glubokikh rudnikov.. [Dys. dokt. nauk: 05.05.06, 01.02.06, Dnipropetrovsk, Instytut heotekhnichnoi mekhaniky NAN Ukrainy].
7. Belmas, I., Kolosov, D., Dolgov, O., & Tantsura, G. (2017). The stress-strain state of the flat rope of hoisting engine with considering their technical state. Technical Sciences, Construction and Architecture, 191–196.
8. Blokhin, S. Ye., Kolosov, D. L., Matisina, N. V., & Shido, N. N. (2013). Napryazhenno-deformirovannoe sostoyanie ploskogo rezinotrosovogo tyagovogo organa v pritsepnom ustroistve. Gornii informatsionno-analiticheskii byulleten, 3, 256–261.
9. Kolosov, D. L. (2002). Obgruntuvannia parametriv ta konstruktsii dvosharovykh humotrosovykh konveiernykh strichok dlia hirnychykh pidpryiemstv. [Dys. kand. nauk: 05.05.06, Natsionalnyi hirnychyi universytet].
10. Belmas, I. V., & Kolosov, D. L. (2017). Napruzheno-deformovanyi stan ploskoho kanata zumovlenyi poryvamy tiahovykh elementiv ta konstruktsiieiu barabana pidiomnoi mashyny. Zbirnyk naukovykh prats NHU, 50, 163–170.