№76-23

Simulating the structure-property relationship in weld zones

U. Slupska1, O. Beketov2, N. Rott1, D. Laukhin1, O. Tverdokhlib1, І. Verner1

1Dnipro University of Technology, Dnipro, Ukraine

2Prydniprovska State Academy of Civil Engineering and Architecture, Dnipro, Ukraine

Coll.res.pap.nat.min.univ. 2024, 76:273–282

Full text (PDF)

https://doi.org/10.33271/crpnmu/76.273

ABSTRACT

Purpose. This study investigates the relationship between the geometrical parameters of welded zones and the corresponding structural state formed in low-carbon low-alloy steels after electron beam welding.

MethodsA simulation model was developed and simulation experiments were conducted.

ResultsThe relationship between the geometrical parameters of welded zones and the corresponding structural state of low-carbon low-alloy steels 09G2S, 10KhSND, and 10G2FB after electron beam welding was analyzed using confirmatory factor analysis. Confirmatory factor analysis was performed by constructing a path diagram. The following variables were used to obtain the diagram: the percentage content of the structural components of ferrite and pearlite; geometric dimensions of the welded joint sections. Mathematical methods of covariance and correlation analysis were used to check the adequacy of the obtained model. The obtained data show that the indicators of the obtained criteria correspond to reliability.

Scientific noveltyThe methodology of applying confirmatory factor analysis for the quantitative analysis of the relationship between the geometrical parameters of welded zones and the corresponding structural state was developed. The relationship between the geometric dimensions of the welded joint zones and the corresponding structural state formed in low-carbon, low-alloy steels after electron beam welding and the corresponding structural state was analyzed.

Practical significanceThe confirmatory factor analysis was used to analyze the relationship between the geometrical parameters of welded zones and the corresponding structural state of low-carbon low-alloy steels 09Г2С, 10ХСНД, and  0Г2ФБ.

Keywords: confirmatory factor analysis, path diagram, covariance analysis, correlation analysis, maximum likelihood method, least squares method.

References

1. Slupska Yu.S. (2021). Osoblyvosti modeliuvannia protsesiv formuvannia struktury v zvarnykh z’iednanniakh nyzkovuhletsevykh nyzkolehovanykh stalei: dys. Doktora filosofii: 132 / Derzhavnyi vyshchyi navchalnyi zaklad «Prydniprovska derzhavna akademiia budivnytstva ta arkhitektury». Dnipro.

2. Laukhin, D. V., Beketov, O. V., Tiuteriev, I., Slupska, Yu. S., Rott, N. O. (2021). Zastosuvannia metodiv faktornoho analizu u doslidzhenni strukturnoho stanu zvarnoho z’iednannia pislia lazernoho zvariuvannia. Ukrainskyi zhurnal budivnytstva ta arkhitektury, (3), 91–100.

3. Bratushka S.M., Nekhai V.V. (2009). Imitatsiine modeliuvannia yak instrument doslidzhennia skladnykh ekonomichnykh system. Visnyk Ukrainskoi akademii bankivskoi spravy, 2, 113–118

4. Tomashevskyi, V. M. (2015). Zasoby imitatsiinoho modeliuvannia dlia navchannia, yaki gruntuiutsia na movi GPSS. Tekhnichni nauky ta tekhnolohii, (2), 101–105.

5. Slupska, Y.S., Laukhin, D.V., Beketov, O.V., Babenko, E.O., Rott, N.O., & Dytiuk, V.E. (2021). Metallographic analysis of potential areas of destruction initiation of the zone of thermal impact of low-carbon steels after laser welding. Materials Science and Industrial Mechine-Building, (65), 88–98.

6. Opria, A. T. (2012). Statystyka (modulnyi variant z prohramovanoiu formoiu kontroliu znan): navchalnyi posibnyk. Kyiv «Tsentr uchbovoi literatury».

7. Diez, D., Cetinkaya-Rundel, M., & Barr, Ch. (2019). OpenIntro Statistics. 4-th ed. https://lib.sumdu.edu.ua/library/DocumentView?docid=USH.4690507&field=0

8. Slupska, Yu.S., Laukhin, D. V., Beketov, O. V., Tiuterev, I. A., & Rott, N. O. (2021). Zastosuvannia metodiv faktornoho analizu u doslidzhenni strukturnoho stanu zvarnoho z’iednannia pislia lazernoho zvariuvannia. Ukrainskyi zhurnal budivnytstva ta arkhitektury. Naukovo-praktychnyi zhurnal, 3, 91–100.

9. Heiets, V. M., Klebanova, T. S., & Cherniak, O. I. (2005). Modeli ta metody sotsialno-ekonomichnoho prohnozuvannia. VD «INZhEK».

10. Fetisov, V. S. (2018). Paket statystychnoho analizu danykh STATISTICA. Nizhyn: NDU im. M. Hoholia.

11. Hrybok, M. I. (2009). Imitatsiine modeliuvannia pokhybok vymiriuvannia parametriv vysokoomnykh trykomponentnykh kompleksnykh oporiv metodom zmishchennia systemy koordynat za strumom. Visn. Nats. Un-tu «Lviv. Politekhnika», (639),224–234

12. Beketov, O. V., Laukhin, D., Slupska, Yu. S., Rakaiev, O. M., & Prykhno, K. Ye. (2023). Zastosuvannia metodu statystychnykh vyprobuvan dlia imitatsiinoho modeliuvannia skladnykh system. Ukrainskyi zhurnal budivnytstva ta arkhitektury, (5), 36–43.

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

477199
Today
This month
Total
154
6837
477199