№77-16

Improvement of methodological approaches to the assessment and forecasting of changes in the environmental condition as a consequence of military actions

P. Lomazov1, А. Pavlуchenko1

1Dnipro University of Technology,Dnipro, Ukraine

Coll.res.pap.nat.min.univ. 2024, 77:174–183

Full text (PDF)

https://doi.org/10.33271/crpnmu/77.174

ABSTRACT

Goal. To study the impact of rocket explosions, UAV explosions and potential consequences for public health and ecosystems, as well as to develop methodological recommendations to reduce the impact on the environment and increase the effectiveness of safety measures in the context of possible man-made disasters arising from military operations.

Methodology. The research applied the following methods: scientific search and synthesis of literature data; statistical analysis to assess the dynamics of pollutant emissions generated during explosions in the air, on the ground, and at strategic sites, as well as their consequences—fires.

Research results. The structure of missile equipment, the design and content of chemicals, and health effects were analyzed. The potential dynamics of harmful substances entering the atmosphere from rocket fall and explosion under different conditions was estimated. The types of pollution sources arising from military operations are analyzed.

Scientific novelty. The peculiarities of the impact on the atmospheric air of explosions during rocket attacks, fires, burning of military equipment, fuel, etc. are established. The consequences and extent of the impact on the state of environmental components and human health are determined depending on the type of shells, missiles, unmanned aerial vehicles and other types of weapons of mass destruction, as well as the chemical composition of rocket fuel and detonation products. 

Practical significance. Awareness and minimization of environmental risks associated with the use of ammunition by providing detailed information on toxic components and their impact on health and the environment. It also outlines the need to comply with ammunition disposal regulations and improves the practice of military exercises in terms of environmental safety, which generally leads to improved regulations and an increased level of environmental safety in the context of military operations using modern weapons and missile systems.

Keywords: atmospheric air, rocket explosions, emissions of harmful substances, air quality index, atmospheric pollution index, public health.

References

1. Dyrektyva 2008/50/IeS Yevropeiskoho Parlamentu ta Rady vid 21 travnia 2008 roku pro yakist atmosfernoho povitria ta chystishe povitria dlia Yevropy. (2008). Baza danykh «Zakonodavstvo Ukrainy». https://zakon.rada.gov.ua/laws/show/994_950#Text

2. Bordeleau, G., Ampleman, G., Thiboutot, S., & Martel, R. (2008). Environmental impacts of training activities at an air weapons range. Journal of Environmental Quality, 37(5), 1751–1763. https://doi.org/10.2134/jeq2007.0197

3. Departament ekolohichnoi polityky Dnipropetrovskoi miskoi rady. (2018). Ekolohichnyi pasport m. Dnipro. https://dniprorada.gov.ua/upload/editor/Екологічний%20паспорт%20м%20Дніпро_2017_.PDF

4. Metodychni rekomendatsii z pidhotovky ta zatverdzhennia Prohram derzhavnoho monitorynhu u haluzi okhorony atmosfernoho povitria (proiekt). (2021). Kyiv.

5. Khazan, P. V., & Anhurets, O. V. (2017). Vprovadzhennia pryntsypiv «zelenoi ekonomiky» v Dnipropetrovskii oblasti: Suchasnyi stan ta problemy rozvytku statystyky, obliku ta audytu v umovakh hlobalizatsii ta enerhozberezhennia. Materialy V Mizhnarodnoi naukovo-praktychnoi konferentsii, 2, 203–205.
6. Buchavyi, Yu. V., Pavlychenko, A. V., & Semerich, K. V. (2013). Alhorytm bahatofaktornoho modeliuvannia protsesiv zabrudnennia atmosfernoho povitria na hirnychozbahachuvalnykh kombinatakh. DVNZ “NHU”.

7. Hutorova,A. D. (2023). Ekolohichni naslidky viiny v Ukraini. Vseukrainska naukovo-praktychna internet-konferentsiia studentiv, aspirantiv ta molodykh vchenykh «Ekolohichno stalyi rozvytok urbosystem: vyklyky ta rishennia v konteksti yevrointehratsii Ukrainy», 151. https://eprints.kname.edu.ua/64315/1/Conference_NUUEK_2023_November_rev.pdf

8. Kutsenko, M. A., & Alieksieiev,A. H. (2020). Otsinka kilkosti shkidlyvykh rechovyn v produktakh zghorannia pry pozhezhi rozlytykh horiuchykh ridyn ta ekolohichnykh vtrat vnaslidok takoi pozhezhi. Cherkaskyi instytut pozhezhnoi bezpeky imeni Heroiv Chornobylia Natsionalnoho universytetu tsyvilnoho zakhystu Ukrainy.https://fire-journal.ck.ua/index.php/fire/article/view/53/44

9. Khokholyk, Z. (2022). Ekolohichni zahrozy zastosuvannia raketnoho ozbroiennia ta boieprypasiv. Nauka i biznes: problemy, perspektyvy ta innovatsii v umovakh voiennoho stanu. http://dspace.wunu.edu.ua/bitstream/316497/47508/1/%D0%A5%D0%BE%D1%85%D0%BE%D0%BB%D0%B8%D0%BA%20%D0%97%D0%BE%D1%80%D1%8F%D0%BD%D0%B0.pdf

10. Pro zatverdzhennia Poriadku utylizatsii raket, boieprypasiv i vybukhovykh rechovyn. (2006). Kyiv. http://zakon4.rada.gov.ua/laws/show/812-2006-%D0%BF

11. Kolinkovskyi, O. M. (2022). Problemy otsinky khimichnoho presynhu ta prohnozuvannia naslidkiv dlia zdorov’ia liudei vid zabrudnennia povitria, pov’iazanoho z vedenniam boiovykh dii v Ukraini. Aktualni problemy profilaktychnoi medytsyny, 25. https://doi.org/10.32782/2786-9067-2023-25-21

12. Nakaz MOZ Metodychni rekomendatsii «Otsinka ryzyku dlia zdorov’ia naselennia vid zabrudnennia atmosfernoho povitria» № 184. (2007).

13. Held, M. (1983). TNT—equivalent. Propellants, explosives, pyrotechnics, 8(5), 158–167. https://doi.org/10.1002/prep.19830080507

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

477199
Today
This month
Total
154
6837
477199