№77-6

Degassing methods and means analysis of mine workings and methane utilization to improve site degassing efficiency in the Western Donbas mines

M. Shyshov1

1LLC“DTEKEnergy”, Kyiv, Ukraine

Coll.res.pap.nat.min.univ. 2024, 77:56–73

Full text (PDF)

https://doi.org/10.33271/crpnmu/77.056

ABSTRACT

Purpose. To analyze the methods and means of degassing excavation workings and methane utilization to improve the efficiency of site degassing in the Western Donbas mines.

Research methodology. An integrated approach was used to achieve this goal including the analysis of existing geomechanical factors and the disclosure of the mechanism of their influence on gas production in underworked rock massif in the Western Donbas condition.

Research resultsThe methods and means of degassing excavation areas and methane utilization were analyzed. The analysis showed satisfactory degassing efficiency with the prospect of extracting a methane-air mixture with a methane concentration of 25–45%, which creates conditions for the development of methane utilization by combustion in cogeneration units for the production of heat and electricity. At the same time, the analysis of modern research on methods and means of area degassing has proved the existence of significant reserves for increasing its efficiency by choosing rational parameters of the technology of this process, taking into account the influence of geomechanical and technological factors.

Scientific novelty. Methane capture with its discharge to the Earth surface is much safer and cheaper than diluting it with air and transporting it through mine workings it has been establishedfor the first time.This makes it possible to use methane to compensate for the costs of degassing processes with the active development of the so-called site degassing. The trends in the influence of geomechanical and technological factors on gas separation processes were determined for the first time. The ideas about the mechanism of overburden displacement in the mines of Western Donbas were further developed in terms of determining the zones of stratification and fracturing of roof rocks during coal seams mining.

Practical value. The obtained results prove that determining the regularities of the influence of geomechanical and technological factors on the processes of gas emission should be based on the study of the degassing mechanism, modeling of this process and assessment of reliability based on the results of mine experiments, which will contribute to the development of underground coal mining.

Keywords: coal mine, rock massif, site degassing, geomechanical and technological factors.

References

1. International Energy Agency. (2016). Coal Information. https://doi.org/10.1787/coal-2016-en

2. Snihur, V., Malashkevych, D., & Vvedenska, T. (2016). Tendencies of coal industry development in Ukraine. Mining of Mineral Deposits, 10(2), 1–8. https://doi.org/10.15407/mining10.02.001

3. Bondarenko, V., Salieiev, I., Kovalevska, I., Chervatiuk, V., Malashkevych, D., Shyshov, M., & Chernyak, V. (2023). A new concept for complex mining of mineral raw material resources from DTEK coal mines based on sustainable development and ESG strategy. Mining of Mineral Deposits, 17(1), 1–16. https://doi.org/10.33271/mining17.01.001

4. BP Statistical Review of World Energy.(2018).https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf

5. International Energy Agency. (2017). Coal Information. https://iea.blob.core.windows.net/assets/9f9f4b45-66c4-4790-a16f-7cf5799b8fdf/Coal2017.pdf

6. Atashi, H., & Veiskarami, S. (2018). Green fuel from coal via Fischer–Tropsch process: scenario of optimal condition of process and modelling. International Journal of Coal Science and Technology,5(2), 230–243. https://doi.org/10.1007/s40789-018-0204-7

7. Stala-Szlugaj, K., & Grudziński, Z. (2021). Price trends on the international steam coal market in 2000-2020. Gospodarka surowcami mineralnymi – Mineral resources management, 37(4), 177–198. https://doi.org/10.24425/gsm.2021.139743

8. Gavurova, B., Rigelsky, M., & Ivankova, V. (2021). Greenhouse Gas Emissions and Health in the Countries of the European Union. Front. Public Health, (9), 756652. https://doi.org/10.3389/fpubh.2021.756652

9. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive Technologies of Coal, Coalbed Methane, and Ores Mining. London, United Kingdom: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b17547

10. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (Eds.). (2015). New Developments in Mining Engineering 2015. London, United Kingdom: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b19901

11. Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 24–30.

12. Falshtynskyi, V.S., Dychkovskyi, R.O., Lozynskyi, V.H., & Caik, P.B. (2012). Kombinovanyi sposib vydobuvannia bidnykh hazovykh sumishei pry dehazatsii vuhilnykh plastiv ta yikh adaptatsiia dlia promyslovoi pererobky. Zbirnyk naukovykh prats Natsionalnoho hirnychoho universytetu, (37), 65–69.

13. Storyzhko, V.E., Kyryk, H.V., & Stadnyk, A.D. (2008). Novi tekhnolohii ta obladnannia dlia zbilshennia metanoviddachi vuhilnykh plastiv. Heotekhnichna mekhanika, 40–46.

14.Szlązak, N., Tor, A., Jakubów, A., & Gatnar, K. (2004). Methane as a Source of Energy in an AirConditioning System in “Pniowek” Coal Mine. International Mining Forum, 83–98.

15. Koroviaka, Y., Pinka, J., Tymchenko, S., Rastsvietaiev, V., Astakhov, V., & Dmytruk, O. (2020). Elaborating a scheme for mine methane capturing while developing coal gas seams. Mining of Mineral Deposits, 14(3), 21–27. https://doi.org/10.33271/mining14.03.021

16. Medunić, G., Mondol, D., Rađenović, A., & Nazir, S. (2018). Review of the latest research on coal, environment, and clean technologies. Rudarsko Geolosko Naftni Zbornik, 33(3), 13–21. https://doi.org/10.17794/rgn.2018.3.2

17. Zubkova, V., Strojwas, A., Bielecki, M., Kieush, L., & Koverya, A. (2019). Comparative study of pyrolytic behavior of the biomass wastes originating in the Ukraine and potential application of such biomass. Part 1. Analysis of the course of pyrolysis process and the composition of formed products. Fuel, (254), 115688. https://doi.org/10.1016/j.fuel.2019.115688

18. Sheka, I., Salieiev, I., Shyshov, M., Malova, O., Pochepov, V., & Mamaikin, O. (2023). Analysis of the use of composite materials for further application in the support of mine workings. Collection of Research Papers of the National Mining University, 72, 62–76. https://doi.org/10.33271/crpnmu/72.062

19. Saik, P., Petlovanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221–231. https://doi.org/10.4028/www.scientific.net/SSP.277.221

20. Lozynskyi, V.G., Dychkovskyi, R.O., Falshtynskyi, V.S., Saik, P.B., & Malanchuk, Ye.Z. (2016). Experimental study of the influence of crossing the disjunctive geological faults on thermal regime of underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 21–29.

21. Bondarenko, V., Lozynskyi, V., Sai, K., & Anikushyna, K. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 27–32. https://doi.org/10.1201/b19901-6

22. Nawrat, S., & Napieraj, S. (2012). Utilization of the methane from Polish mines. AGH Journal of Mining and Geoengineering, 36(3), 269–282. https://doi.org/10.7494/MINING.2012.36.3.269

23. Wołkowicz, S., Smakowski, T., & Speczik, S. (2011). Bilans perspektywicznych zasobów kopalin Polski – Metan pokáadów wċgla. Warszawa, Polska: PIG-PIB, 262 s.

24. Szlązak, N., Obracaj, D., & Swolkień, J. (2020). Enhancing Safety in the Polish High-Methane Coal Mines: an Overview. Mining, Metallurgy & Exploration, 37(2), 567–579.https://doi.org/10.1007/s42461-020-00190-0

25. Kędzior, S. (2009). Accumulation of coal-bed methane in the south-west part of the Upper Silesian Coal Basin (southern Poland). International Journal of Coal Geology, 80(1), 20–34. https://doi.org/10.1016/j.coal.2009.08.003

26. Kędzior, S. (2015). Methane contents and coal-rank variability in the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology, (139), 152–164. https://doi.org/10.1016/j.coal.2014.09.009

27. Kędzior, S., Kotarba, M. J., & Pękała, Z. (2013). Geology, spatial distribution of methane content and origin of coalbed gases in Upper Carboniferous (Upper Mississippian and Pennsylvanian) strata in the south-eastern part of the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology, (105), 24–35. https://doi.org/10.1016/j.coal.2012.11.007

28 Zheng, C., Jiang, B., Xue, S., Chen, Z., & Li, H. (2019). Coalbed methane emissions and drainage methods in underground mining for mining safety and environmental benefits:
A review. Process Safety and Environmental Protection, (127), 103–124. https://doi.org/10.1016/j.psep.2019.05.010

29. Szlązak, N., Borowski, M., Obracaj, D., Swolkień, J., & Korzec, M. (2014). Comparison of Methane Drainage Methods Used in Polish Coal Mines. Archives of Mining Sciences, 59(3), 655–675.https://doi.org/10.2478/amsc-2014-0046

30. Szlązak, N., Borowski, M., Obracaj, D., Swolkień, J., Korzec, M., Piergies, K. (2017) Current ventilation problems in hard coal mines. Krakow, Poland: AGH University of Science and Technology Press.

31. Shi, L., Wang, J., Zhang, G., Cheng, X., & Zhao, X. (2017). A risk assessment method to quantitatively investigate the methane explosion in underground coal mine. Process Safety and Environmental Protection, (107), 317–333. https://doi.org/10.1016/j.psep.2017.02.023

32. Tong, R., Yang, Y., Ma, X., Zhang, Y., Li, S., & Yang, H. (2019). Risk Assessment of Miners’ Unsafe Behaviors: A Case Study of Gas Explosion Accidents in Coal Mine, China. International Journal of Environmental Research and Public Health, 16(10), 1765. https://doi.org/10.3390/ijerph16101765

33. Hummel, J.A., Ruiz, F.A., & Kelafant, J.R. (2018). Quantifying the benefits of coal mine methane recovery and use projects: Case study on the application of in-mine horizontal pre-drainage boreholes at gassy coal mines in India and the optimization of drainage system design using reservoir simulation. Environmental Technology & Innovation, (10), 223–234.https://doi.org/10.1016/j.eti.2018.03.003

34. Qin, B., Li, L., Ma, D., Lu, Y., Zhong, X., & Jia, Y. (2016). Control technology for the avoidance of the simultaneous occurrence of a methane explosion and spontaneous coal combustion in a coal mine: A case study. Process Safety and Environmental Protection, (103), 203–211. https://doi.org/10.1016/j.psep.2016.07.005

35. Song, Z., & Kuenzer, C. (2014). Coal fires in China over the last decade: A comprehensive review. International Journal of Coal Geology, (133), 72–99. https://doi.org/10.1016/j.coal.2014.09.004

36. Xia, T., Zhou, F., Gao, F., Kang, J., Liu, J., & Wang, J. (2015). Simulation of coal self-heating processes in underground methane-rich coal seams. International Journal of Coal Geology, (141–142), 1–12. https://doi.org/10.1016/j.coal.2015.02.007

37. Jureczka, J., Kasza, P., & Kroplewski, Ł. (2018) Pre-mine drainage of methane from coal seams in the USCB–Geo-Methane Program.XXVII School of Underground Mining. SessionCoal Mine Methane as a Valuable Energy Source. https://unece.org/fileadmin/DAM/energy/images/CMM/CMM_CE/SEP_-_11._Pre-mine_Drainage_of_Methane_from_Coal_Seams_in_the_USCB_%E2%80%93_Geo-Methane_Program.pdf

38. Qin, J., Qingdong, Q., & Guo, H. (2017). CFD simulations for longwall gas drainage design optimisation. International Journal of Mining Science and Technology, 27(5), 777–782.https://doi.org/10.1016/j.ijmst.2017.07.012

39. Szlązak N., Obracaj, D., Borowski M., Swolkień J., & Korzec, M. (2016) Methane in Polish coal mines-methods of control and utilisation. In 24th World Mining Congress proceedings: mining in a world of innovation (pp. 287-297). Rio-de-Janeiro, Brazil: IBRAM.

40. Szlązak, N., Obracaj, D., & Swolkień, J. (2019) Methods of methane control in Polish coal mines. In Proceedings of the 11th International mine ventilation congress (pp. 292-307). https://doi.org/10.1007/978-981-13-1420-9_25

41. Perov, M.O., Makarov, V.M., & Novitsky, I.Yu. (2019). Utilization and directions of methane use at the mines of Ukraine. The Problems of General Energy, (3), 60–66. https://doi.org/10.15407/pge2019.03.060

42. Bulat, A.F., & Chemerys, I.F. (2006). Perspektyvy stvorennya enerhetychnykh kompleksiv na bazi vuhledobuvnykh pidpryyemstv. 48, (2), 3–6.

43. Maidukova, S.S. (2013). Transformuvannia mekhanizmiv upravlinnia mineralno-enerhetychnymy resursamy vuhilnoi promyslovosti: Dys. na zdobuttia nauk. stupenia kandydata ekon. nauk.Spets.: 08.00.06. Donetsk, Ukraina: Donetskyi derzhavnyi naukovo-doslidnyi vuhilnyi instytut.

44. Salieiev, I. (2024). Organization of processes for complex mining and processing of mineral raw materials from coal mines in the context of the concept of sustainable development. Mining of Mineral Deposits, 18(1), 54–66. https://doi.org/10.33271/mining18.01.054

45. Homel I.I., & Riabych O.M. (2006). Heotekhnolohii ta upravlinnia vyrobnytstvom XXI storichchia. Osoblyvosti realizatsii proektiv suchasnoho zdiisnennia u vuhilnii promyslovosti (s. 73–79). Donetsk, Ukraina: Vyd-vo DonNTU.

46. Biletskyi, V.S. (2007). Mala hirnycha entsyklopediia. T. 2. Donetsk, Ukraina: Donbas.

47. Koroviaka, Ye.A., Manukian, E.S., & Vasylenko, O.O. (2004). Perspektyvy vyluchennia shakhtnoho metanu ta yoho utylizatsiia v umovakh shakhty «Zakhidno-Donbaska» VAT «Pavlohradvuhillia». Naukovyi visnyk NHU, (4), 39–43.

48.Maydukov, H.L. (2015). Resursnyy potentsial shakhtnoho metanu v enerhetytsi Ukrayiny. Vuhillya Ukrayiny, (10), 38–45.

49. Ahaiev, R.A. (2015). Obhruntuvannia parametriv pnevmodynamichnoho sposobu intensyfikatsii prytoku metanu v poverkhnevu dehazatsiinu sverdlovynu.Avtoref. dys. na zdobuttia nauk. stupenia kandydata tekhn. nauk. Spets.: 05.15.09. Dnipro, Ukraina: Instytut heotekhnichnoi mekhaniky NAN Ukrainy.

50. Pymonenko, D.M. (2018). Obhruntuvannia heomekhanichnykh parametriv otsinky metanodobuvalnosti diiuchykh ta zakrytykh shakht: Avtoref. dys. na zdobuttia nauk. stupenia kandydata tekhn. nauk. Spets.: 05.15.09. Dnipro, Ukraina: Instytut heotekhnichnoi mekhaniky NAN Ukrainy.

51. Chesnokova, O.V. (2019). Dynamika trishchyn i masoperenos fliuidiv u hazonasychenykh vuhilnykh plastakh pry yikh vidpratsiuvanni. Avtoref. dys. na zdobuttia nauk. stupenia kandydata tekhn. nauk. Spets.: 05.15.09. Dnipro, Ukraina: Instytut fizyky hirnychykh protsesiv.

52. Havrylov, V.I. (2015). Rozvytok naukovo-tekhnichnykh osnov intensyfikatsii dehazatsii napruzhenykh hazonasychenykh vuhilnykh plastiv hidrodynamichnoiu diieiu. Avtoref. dys. na zdobuttia nauk. stupenia doktora tekhn. nauk. Spets.: 05.15.02. Dnipro, Ukraina: Instytut heotekhnichnoi mekhaniky NAN Ukrainy.

53. Cherednikov, V.V. (2011). Obhruntuvannia parametriv pnevmohidrodynamichnoho sposobu intensyfikatsii prytoku metanu v poverkhnevi dehazatsiini sverdlovyny. Avtoref. dys. na zdobuttia nauk. stupenia kandydata tekhn. nauk. Spets.: 05.15.09. Dnipropetrovsk, Ukraina: Instytut heotekhnichnoi mekhaniky NAN Ukrainy.

54. Potapenko, O.O. (2014). Obhruntuvannia parametriv hidravlichnoho rozmitsnennia vuhillia v pryvybiinii zoni hazodynamichno-aktyvnykh plastiv. Avtoref. dys. na zdobuttia nauk. stupenia kandydata tekhn. nauk. Spets.: 05.15.09. Dnipropetrovsk, Ukraina: Instytut heotekhnichnoi mekhaniky NAN Ukrainy.

55. Vasyliev, D.L. (2019). Rozvytok naukovykh osnov vyznachennia parametriv rozvantazhennia pryvybiinoi chastyny hazonosnykh vuhilnykh plastiv. Avtoref. dys. na zdobuttia nauk. stupenia doktora tekhn. nauk. Spets.: 05.15.09. Dnipro, Ukraina: IHTM NAN Ukrainy.

56. Ma, Y., & Xu, Y. (2022). Research into technology for precision directional drilling of gas-drainage boreholes. Mining of Mineral Deposits, 16(2), 27–32. https://doi.org/10.33271/mining16.02.027

57. Zhao-feng, W., Jie, X., Jin-sheng, C., Xue-chen, L., Yan-fei, L., & Xiong-wei, M. (2021). Research on the timeliness of multi-purpose gas drainage by drilling one hole in the floor rock roadway. Coal Science and Technology, (1), 248–256. https://doi.org/10.13199/j.cnki.cst.2021.01.021

58. Hong-min, Yang., Fa-ke, Ren., Zhao-feng, W., Shan-wen, C., & Guanzhen, P. (2019). Quality detection and quantitative evaluation method of gas drainage drilling hole sealing. Chinese Journal of Coal, (S1), 164–170. https://doi.org/10.13225/j.cnki.jccs.2018.1176

59. Hong-min, Y., Shu-tuan, X., Li-wei, C., & Qiang, C. (2018). Research on the non-equidistant hole arrangement and drainage effect evaluation method in this coal seam. Coal Mine Safety, (2), 147–150. https://doi.org/10.13347/j.cnki.mkaq.2018.02.040

60.Jun, L., Ning, L., Jin-qi, W., & Tong, Y. (2019). The spatiotemporal response of the effective influence radius of discharge boreholes with different diameters. China Safety Production Science and Technology, (8), 82–87.

61. Guang-yi, L., & Yan-peng, X. (2017). Research on gas drainage technology of ultra-long directional high-level boreholes in the roof of goaf. Coal Engineering, (8), 88–91. https://doi.org/10.16186/j.cnki.1673- 9787.2019.5.1

62. Xing-quan, L., & Yan-peng, X. (2017). Research on the effect of different permeability distributions on hydraulic perforation drainage. Coal Mine Modernization, (2), 128–131. https://doi.org/10.13606/j.cnki.37- 1205/td.2017.02.050

63. Zhen, S., Zhi-wen, L., Weixin, Y., En-ying, W., & Hong-bo, X. (2020). Analysis of the deviation law and causes of drilling along the seam in coal seam gas drainage. Coal Technology, (3), 103–106. https://doi.org/10.13301/j.cnki.ct.2020.03.030

64. Yan-peng, X., Yang-yang, F., Jian-gong, Y., & Xin-xian, Z. (2018). Experimental study on the deflection law of bedding drilling in coal mine gas drainage. Journal of Henan University of Technology (Natural Science Edition), (6), 1–7. https://doi.org/10.16186/j.cnki.1673- 9787.2018.06.1

65. Hu, H., Bao-hua, D., Wei, P., & Deng-feng, Z. (2020). Analysis of the causes of drilling deflection and the measures to correct the deflection. Western Prospecting Engineering, (7), 32–36.

66. Chao-jie, Z., & Cheng-lin, J. (2016). Study on vertical migration law of drilled drilling along the bed. Coal Technology, (2), 188–189. https://doi.org/10.13301/j.cnki.ct.2016.02.073

67. Ju-bo, J., Hong, H., & Kai, S. (2021). Status quo and prospect of downhole straight drilling technology in coal mine. Drilling Engineering, (7), 14–19.

68. Guo-long, M. (2017). Study on construction deviation of gas drainage drilling drilling. Coal Mine Safety, (3), 147–151. https://doi.org/10.13347/j.cnki.mkaq.2017.03.040

69. Jia-nan, K. (2020). Establishment of original borehole trajectory model and accuracy comparison of simulation methods. Energy and Environmental Protection, (4), 87–91+96. https://doi.org/10.19389/j.cnki.1003- 0506.2020.04.018

70. Chang-jun, L., Dian-sen, Y., Wei-zhong, C., & Jin-quan, L. (2017). Defect correction of general calculation formula of drilling trajectory using equal-angle full-distance method. Science Technology and Engineering, (10), 108–113.

71. Sofiiskyi, K., & Petukh, O. (2019). The results of experimental research of the parameters of methane capturing by local degassing wells in the undermining area. E3S Web of Conferences, (109), 00097.https://doi.org/10.1051/e3sconf/201910900097

72. Karhapolov, A.A. (2017). Obhruntuvannia kryteriiv prohnozu vuhleporodnoho masyvu, nebezpechnykh za hazodynamichnymy proiavamy. Avtoref. dys. na zdobuttia nauk. stupenia kandydata tekhn. nauk. Spets.: 05.15.09. Dnipro, Ukraina: Instytut heotekhnichnoi mekhaniky NAN Ukrainy.

73. Dudlia, K.Ye. (2017). Obhruntuvannia parametriv i rozrobka zasobiv pidvyshchennia bezpeky transportuvannia ta utylizatsii metanu vuhilnykh shakht. Avtoref. dys. na zdobuttia nauk. stupenia kandydata tekhn. nauk. Spets.: 05.26.01. Dnipro, Ukraina: Instytut heotekhnichnoi mekhaniky NAN Ukrainy.

74. Filimonov, P.Ye. (2013). Fizyko-tekhnichni osnovy intensyfikatsii sposobiv vydobutku ta pidvyshchennia yakosti vuhillia v yedynomu shakhtnomu tekhnolohichnomu kompleksi. Avtoref. dys. na zdobuttia nauk. stupenia doktora tekhn. nauk. Spets.: 05.15.02; 05.15.09. Dnipropetrovsk, Ukraina: Instytut heotekhnichnoi mekhaniky NAN Ukrainy.

75. Yefremov, I.O. (2011). Fizyko-tekhnichni osnovy kompleksnoi dehazatsii i vykorystannia metanu vuhilnykh shakht. Avtoref. dys. na zdobuttia nauk. stupenia doktora tekhn. nauk. Spets.: 05.15.02. Dnipropetrovsk, Ukraina: IHTM NAN Ukrainy.

76. Bondarenko, V., Salieiev, I., Symanovych, H., Kovalevska, I., & Shyshov, M. (2023). Uzasadnienie wzorców wpływu czynników geomechanicznych na parametry ścinania formacji nadkładu węgla, wymagającej odgazowania, z dużymi prędkościami posuwu ścian postojowych w Zachodnim Donbasie. Inżynieria Mineralna, 1(1 (51)), 23–32. https://doi.org/10.29227/IM-2023-01-03

77. Lukinov, V.V., Bezruchko, K.A., & Prykhodchenko, O.V. (2015). Otsinka rozpodilu metanu u vuhil-no-porodnomu masyvi za danymy shchodo metanovosti vyyimkovykh dilnyts. Vuhillya Ukrayiny, (11), 16–19.

78. Lukinov, V.V., & Chernoray, A.M. (2017). Prohnozna otsinka statychnoho metanovoho potentsialu vuhilnykh shakht. Vuhillya Ukrayiny, (5–6), 21–25.

79. Antoshchenko, M.I. (2003). Eksperymentalna otsinka hazovydilen pid chas aktyvizatsiyi zsuvu porid. Vuhillya Ukrayiny, (2), 38–39.

80. Kharin, B.M., Antoshchenko, M.I., & Hasyuk, R.L. (2014). Nerivnomirnist hazovydilennya z vuhilnykh plastiv i porid, shcho pidroblyayutsya. Vuhillya Ukrayiny, (1), 32–35.

81. Bondarenko, V., Kovalevska, I., Krasnyk, V., Chernyak, V., Haidai, O., Sachko, R., & Vivcharenko, I. (2024). Methodical principles of experimental-analytical research into the influence of pre-drilled wells on the intensity of gas-dynamic phenomena manifestations. Mining of Mineral Deposits, 18(1).https://doi.org/10.33271/mining18.01.067

82. Bondarenko, V., Salieiev, I., Kovalevska, I., Symanovych, H., Shyshov, M., & Malova, O. (2023). Development of ideas about the mechanism of coal-overlaying formation displacement in terms of its influence on local gas-drainage parameters in the Western Donbas conditions. Collection of Research Papers of the National Mining University, 72, 27–39. https://doi.org/10.33271/crpnmu/72.027

83. Antoshchenko, M.I. (2014). Bezpechne vidpratsiuvannia hazonosnykh vuhilnykh plastiv z urakhuvanniam heomekhanichnykh protsesiv. Alchevsk, Ukraina: DonDTU.

84. Bondarenko, V. Kovalevska, I., Symanovych, H., Barabash, M., Chervatiuk, V., Husiev, O., & Snihur, V. (2020). Combined roof-bolting systems of mine workings. London, United Kingdom: CRC Press, Taylor & Francis Group.

85. Sabitova, D.K. (2015). Exploration Potential f Coalbed Methane in Karaganda Field. Modern Applied Science, 9(6). https://doi.org/10.5539/mas.v9n6p145

86. Burchak, O.V. (2018). Rozvytok teorii ta rozrobka fizyko-khimichnoi modeli anomalnykh metanoproiaviv u vuhilnykh shakhtakh. Avtoref. dys. na zdobuttia nauk. stupenia doktora tekhn. nauk. Spets.: 05.15.09. Dnipro, Ukraina: Instytut heotekhnichnoi mekhaniky NAN Ukrainy.

87. Ilyashov, M.O., Ahafonov, A.V., Bodnar, O.O., & Kocherha, V.M. (2010). Pro koryhuvannya obliku metanoobylnosti vyrobok pry intensyvniy rozrobtsi tonkykh polohykh vuhilnykh plastiv. Shkola pidzemnoyi rozrobky, 25–29.

88. Minyeyev, S.P., Kocherha, V.M., & Yanzhula, A.S. (2015). Zakonomirnosti metanovydilennya pry vysokykh shvydkostyakh prosuvannya ochysnoho vyboyu. Vuhillya Ukrayiny, (7), 26-31.

89. Kanduč, T., Sedlar, J., Novak, R., Zadnik, I., Jamnikar, S., Verbovšek, T., Grassa, F., & Rošer, J. (2021). Exploring the 2013-2018 degassing mechanism from the Pesje and Preloge excavation fields in the Velenje Coal basin, Slovenia: insights from molecular composition and stable isotopes. Isotopes in Environmental and Health Studies, 57(6), 585–609. https://doi.org/10.1080/10256016.2021.1981309

90. Bondarenko, V.I., Salieiev, I.A., Chervatiuk, V.H.,  Symanovych, H.A., & Kovalevska, I.A. (2024). Prykladni zadachi heomekhaniky vuhilnykh shakht. Knyha 1. Modeliuvannia hirskoho masyvu: navch. posib. Dnipro: LPres.

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

477199
Today
This month
Total
154
6837
477199