№78-2
Modeling the process of explosive destruction of rock massifs of different strength in ANSYS AUTODYN
M. Beltek1, O. Han1, A. Frolov1,
1National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
Coll.res.pap.nat.min.univ. 2024, 78:18–29
Full text (PDF)
https://doi.org/10.33271/crpnmu/78.018
ABSTRACT
Purpose. The purpose of research of the presented article is to identify the regularities of the explosion action in the massifs of different strength when modeling the process of rock fracture in the software environment ANSYS AUTODYN for given technological conditions.
The methods. The complex methodical approach was used, which consists in the analysis of previous results of scientific research on modeling the action of the explosion in ANSYS AUTODYN, comparative analysis of the obtained data on computer numerical simulation, graph-analytical establishment of the relationship between the volume of the explosive destruction funnel and the coefficient of structural weakening of the rock massif.
Findings. Computer modeling of explosive fracture of rock massif in ANSYS AUTODYN showed the reliability of the results obtained, which are confirmed by the research data of scientists and personal experience of the authors.It is established that the duration of active destructive pressure of explosion products in the rock under these conditions is about 0,35 ms. Further destruction of the rock massif is carried out under the action of accumulated loads in the rock and inertia of the rock mass movement up to 1,0...1,5 ms depending on the strength of the rock massif.
Images of rock mass fractures with different degrees of structural weakening were obtained, with the help of which volumetric figures of fracture funnels were created and their volumes were determined.It is established, that the volume of a funnel of destruction of granite which strength is accepted as strength in a laboratory sample, almost in 6 times less than volume of destruction of maximally structurally weakened granite rock massif.
Theoriginality. The graphical and analytical dependences of the destruction funnel volume on the structural weakening coefficient in rock massifs of different strength for the given modeling conditions have been established.
Practical implementation. The results of modeling the action of blast of cylindrical explosive charge in rock massif allow to optimize the parameters of drilling and blasting operations at mining enterprises for extraction of minerals, as well as during construction of underground structures for general and special purposes in massifs of different strength.
Keywords: rock massif, structural weakening coefficient, numerical modeling, ANSYS AUTODYN, strength model, borehole charge, explosive, picture of destruction, destruction funnel volume.
References
1. Shashenko, O.M. , Sdvyzhkova, O.O. & Hapieiev, S.M. (2008). Deformovanist ta mitsnist masyviv hirskykh porid: monohrafiia. Dnipropetrovsk: Natsionalnyi hirnychyi universytet.
2. Beltek, M.I., Yevpak, N.A. & Frolov, O.O. (2022). Analiz faktoriv, shcho vplyvaiut na mitsnist trishchynuvatoho hirskoho masyvu. Tezy Vseukrainskoi naukovo-praktychnoi online-konferentsii zdobuvachiv vyshchoi osvity i molodykh uchenykh, prysviachenoi Dniu nauky, Zhytomyrska politekhnika, 129–130. https://conf.ztu.edu.ua/wp-content/uploads/2022/06/7-1.pdf
3. Kovrov, O.S. & Tereshchuk, R.M. (2020). Analiz pidkhodiv shchodo vyznachennia mitsnisnykh kharakterystyk hirskykh porid dlia prohnozu zsuvonebezpechnosti ukosiv, Naukovo-tekhnichnyi zhurnal «Suchasni tekhnolohii, materialy i konstruktsii v budivnytstvi», 1, 63–72. https://doi.org/10.31649/2311-1429.2020-1-63-72
4. Beltek, M.I. & Frolov, O.O. (2023). Vstanovlennia vplyvu stupenia trishchynuvatosti hirskoho masyvu na pokaznyk znyzhennia yoho mitsnosti. Zbirnyk naukovykh prats NHU, 74, 7–19. https://doi.org/10.33271/crpnmu/74.007
5. Kulynych, V.D., Shapoval, O.O., Drahobetskyi, V.V., Vorobiov, V.V., Shlyk, S.V. Pieieva, I.E., Arhat, R.H., & Vorobiova, L.D. (2022). Tekhnolohiia vybukhovoho ruinuvannia seredovyshcha shliakhom zminy mekhanichnykh vlastyvostei v blyzhnii zoni vybukhu: monohrafiia. Kremenchuk: NOVABUK.
6. Sait kompanii ANSYS, Inc. (n.d.). https://www.ansys.com.
7. Faserova,D. (2006). Numerical Analyses of Buried Mine Explosions with Emphasis on Effect of Soil Properties on Loading: PhD Thesis. UK: Cranfield University.
8. Vorobyov, V., Pomazan, M., Shlyk, S., & Vorobyova, L. (2017). Simulation of dynamic fracture of the borehole bottom taking into consideration stress concentrator. Eastern-European Journal of Enterprise Technologies, 3(1(87)), 53–62. https://doi.org/10.15587/1729-4061.2017.101444
9. Beltek, M.I., Yevpak, N.A., & Frolov, O.O. (2024). Modeliuvannia dii vybukhu sverdlovynnoho zariadu v pryrodno porushenomu trishchynuvatomu masyvi v seredovyshchi Ansys. Tezy Vseukrainskoi naukovo-praktychnoi onlain-konferentsii aspirantiv, molodykh uchenykh ta studentiv, prysviachenoi Dniu nauky, Zhytomyrska politekhnika, 147–148. https://conf.ztu.edu.ua/wp-content/uploads/2024/06/sekcija-7.pdf
10. ANSYS Autodyn User's Manual (2013). Release 15.0, Southpointe, Canonsburg.
11. Hansson, H. (2009). Determination of properties for emulsion explosives using cylinder expansion tests and FEM simulation. Swebrec Report 2009:1, Stockholm.
12. Beltek, M.I., & Evpak, N.A. (2024). Results of modeling the explosion of a borehole charge in a fractured rock massif in ANSYS AUTODYN. Zbirnyk naukovykh prats KhVI naukovo-tekhnichnoi konferentsii «ENERHETYKA. EKOLOHIIa. LIuDYNA», KPI im. Ihoria Sikorskoho, 124–128. https://en.iee.kpi.ua/files/2024/dopovidi2024.pdf