№78-10

On the calculation of forecasting parameters of gas-dynamic phenomena from spectra of seismo-acoustic signals

Yu. Golovko1, O. Shashenko1

1Dnipro University of Technology, Dnipro, Ukraine

Coll.res.pap.nat.min.univ. 2024, 78:112–127

Full text (PDF)

https://doi.org/10.33271/crpnmu/78.112

ABSTRACT

Purpose. Study of possible shortcomings of the procedure for calculating the normatively accepted prognostic parameters of the current forecast of gas-dynamic phenomena in mines based on spectral characteristics of seismoacoustic signals caused by the action of rock-destroying mechanisms on a coalface.

The methods. The studies that served as a basis for establishing the existing procedure for calculating prognostic parameters were analyzed. Computer modeling of spectral curves and calculations based on the spectra of prognostic parameters was performed. An assessment of the correspondence between the values of parameters and the type of spectral curves was made.

Findings. The relationship between forecasting methods using analog equipment and procedures for obtaining numerical values of forecast parameters is demonstrated. The standard procedure for calculating forecast parameters, implemented in most outburst-hazardous mines in Ukraine, is examined in detail. It is found that this procedure, at least in some cases, cannot reflect the redistribution of the spectrum and can lead to contradictory values of the sought parameters. The possibility of using quantiles of the cumulative function of the spectrum to form forecast parameters was investigated. It is shown that quantile changes adequately reflect shape changes and spectra shifts.

The originality. The presence of unstable spectra of seismoacoustic signals relative to the values of the accepted prognostic parameters has been proven. It has been established that the prognostic parameters calculated by the accepted procedure may not reflect real changes in the signal spectrum and, accordingly, be erroneous. It is proposed to build a forecast of a dangerous state based on the spectrum quantiles of seismoacoustic signals.

Practical implementation. The study results can be used to correct the algorithm for calculating prognostic parameters according to the accepted procedure and to improve the forecast methodology by using spectra quantile estimates.

Keywords: forecast of gas-dynamic phenomena, spectral estimation, outburst-hazardous coefficient, quantiles.

References

1. SOU 10.1.00174088.011–2005 Pravyla vedennia hirnychykh robit na plastakh skhylnykh do hazo–dynamichnykh yavyshch. (2005). Minvuhleprom Ukrainy.

2. Lunov, S. H., Kolchyn, H. I., & Nikiforov, A. V. (2002). Dynamika masyvu v nebezpechnykh po hazodynamichnym yavyshcham zonakh. Heotekhnichna mekhanika, (40), 132–137.

3. Nikiforov, A. V., & Ryzhkov, M. F. (2018). Doslidzhennia dynamiky zminy parametriv akustychnoho syhnalu pered vykydamy vuhillia ta hazu. Sposoby ta zasoby stvorennia bezpechnykh ta zdorovykh umov pratsi u vuhilnykh shakhtakh, 1(40), 5–14.

4. Kabiesz, J., Sikora, B., Sikora, M., & Wróbel, L. (2013). Application of Rule-Based Models for Seismic Hazard Prediction in Coal Mines. Acta Montanistica Slovaca, 18(4), 262–277. https://actamont.tuke.sk/pdf/2013/n4/7sikora.pdf

5. Peng, J., & Shi, S. (2023). Hazard prediction of coal and gas outburst based on the Hamming distance artificial intelligence algorithm (HDAIA). Journal of Safety Science and Resilience, 4(2), 151–158. https://doi.org/10.1016/j.jnlssr.2022.12.001

6. Jinqiang, W., Basnet, P., & Mahtab, S. (2021). Review of machine learning and deep learning application in mine microseismic event classification. Mining of Mineral Deposits, 15(1), 19–26. http://mining.in.ua/2021vol15_1_3.html

7. Anani, A., Adewuyi, S. O., Risso, N., & Nyaaba, W. (2024). Advancements in machine learning techniques for coal and gas outburst prediction in underground mines. International Journal of Coal Geology, 285(11), 104471. https://doi.org/10.1016/j.coal.2024.104471

8. Du, J., Chen, J., Pu, Y., Jiang, D., Chen, L., & Zhang, Y. (2021). Risk assessment of dynamic disasters in deep coal mines based on multi-source multi-parameter indexes and engineering application. Process Safety and Environmental Protection, 155, 575–586. https://doi.org/10.1016/j.ssci.2018.12.025

9. Sun, H., Qi, Y., Tian, W., Chen, G., & Wang, Y. (2021). Propagation Features of Channel Wave Signal in Coal Seam with Scouring Zone. Traitement du Signal, 38(4), 1149–1160. https://doi.org/10.18280/ts.380426

10. Schwardt, M., Pilger, C., Gaebler, P., Hupe, P., & Ceranna, L. (2022). Natural and anthropogenic sources of seismic hydroacoustic and infrasonic waves: Waveforms and spectral characteristics (and their applicability for sensor calibration). Surveys in Geophysics, 43(5), 1265–1361. https://doi.org/10.1007/s10712-022-09713-4

11. Chambers, D., & Shragge, J. (2023). Seismoacoustic Monitoring of a Longwall Face Using Distributed Acoustic Sensing. Bulletin of the Seismological Society of America, 113(4), 1652–1663. https://doi.org/10.1785/0120220219

12. Hu, H., Dou, L., Gong, S., He, J., Zheng, Y., & Zhang, X. (2019). Microseismic and electromagnetic coupling method for coal bump risk assessment based on dynamic static energy principles. Safety Science, 114, 30–39. https://doi.org/10.1016/j.ssci.2018.12.025

13. Cao, A., Dou, L., Cai, W., Gong, S., Liu, S., & Jing, G. (2015). Case study of seismic hazard assessment in underground coal mining using passive tomography. International Journal of Rock Mechanics and Mining Sciences, 78, 1–9. https://doi.org/10.1016/j.ijrmms.2015.05.001

14. Chen, Y., Zhang, J., Zhang, J., Xu, B., Zhang, L., & Li, W. (2021). Rockburst Precursors and the Dynamic Failure Mechanism of the Deep Tunnel: A Review. Energies, 14, 7548. https://doi.org/10.3390/en14227548

15. Meyer, S. (2024). Seismic Monitoring Systems in Mines, where are we Today? 58th U.S. Rock Mechanics/Geomechanics Symposium. https://doi.org/10.56952/arma-2024-0785

16. Brijraj, S., Moolla, S., & Lynch, R. (2024). Full-waveform automatic location of small seismic events in an underground mine using synthetic strain Greens tensors. Journal of the Southern African Institute of Mining and Metallurgy, 124, 269–278. https://doi.org/10.17159/2411-9717/1416/2024

17. Liu, F., Wang, Y., Kou, M., & Liang, C. (2024). Applications of Microseismic Monitoring Technique in Coal Mines: A State-of-the-Art Review. Applied Sciences, 14(4), 1509. https://doi.org/10.3390/app14041509

18. Lunov, S.H., & Kolchyn, H.I. (2005). Akustychnyi kontrol vykydonebezpeky v ochysnomu vyboi. Sposoby ta zasoby stvorennia bezpechnykh ta zdorovykh umov pratsi u vuhilnykh shakhtakh, 1(17), 97–109.

19. Koptikov, V.P., Bokii, B.V., Minieiev, S.P., Yuzhanin, I.A., & Nikiforov, A.V. (2016). Udoskonalennia sposobiv ta zasobiv bezpechnoi rozrobky vuhilnykh plastiv, skhylnykh do hazodynamichnykh yavyshch. Donetsk: «Promin».

20. Posibnyk iz zastosuvannia na shakhtakh Donbasu sposobu kontroliu vykydonebezpechnosti pryvybiinoi chastyny masyvu v pidhotovchykh vyrobkakh za parametramy akustychnoho syhnalu. (1996). Minvuhleprom Ukrainy.

21. Posibnyk iz zastosuvannia na shakhtakh Donbasu sposobu avtomatyzovanoho kontroliu vykydonebezpeky v ochysnykh vyrobkakh za parametramy tekhnohennoho akustychnoho syhnalu. (2000). Derzhavnyi departament vuhilnoi promyslovosti Minpalyvenerho Ukrainy.

22. Posibnyk iz zastosuvannia prohramnoho zabezpechennia PROGNOZ4.0. (2013). MakNDI.

23. Shadrin, A. V., & Kontrimas, A. A. (2017). Basic tasks for improving spectral-acoustic forecasting of dynamic phenomena in coal mines. IOP Conference Series: Earth and Environmental Science, 84, 012040. https://doi.org/10.1088/1755-1315/84/012040

24. Lunov, S. H. (2000). Osoblyvosti prohnozu vykydonebezpeky v ochysnykh vyboiakh. Sposoby ta zasoby stvorennia bezpechnykh ta zdorovykh umov pratsi u vuhilnykh shakhtakh, 1(7), 133–138.

25. Koval, A. R., Kolchyn, H. I., Bondarenko, A. D., Aleksiiev, E. V., & Lukashev, A. A. (2011). Akustychni doslidzhennia na osoblyvo nebezpechnomu plasti v umovakh shakhty im. A. A. Skochynskoho. Sposoby ta zasoby stvorennia bezpechnykh ta zdorovykh umov pratsi u vuhilnykh shakhtakh, 2(28), 100–106.

26. Lars, J. K., Leitao, A., & Nguyen, D. (2023). Spline local basis methods for nonparametric density estimation. Statist. Surv, 17, 75–118. https://doi.org/10.1214/23-SS142

27. Golovko, Y. М. (2023). Spectral estimation of a broadband time-limited noise signal. Matematychne modeliuvannia, 2(49), 86–97. https://doi.org/10.31319/2519-8106.2(49)2023.292638

28. Golovko, Y., & Sdvyzhkova, O. (2024). Cumulative triangle for visual analysis of empirical data. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 114–120. https://doi.org/10.33271/nvngu/2024-4/114

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

501310
Today
This month
Total
210
6768
501310