№78-16
Composition of microflora of biofertilizers obtained using vermicomposting and composting technologies
О. Sidashenko1, I. Myronova1, K. Tymchyi2
1Dnipro University of Technology, Dnipro, Ukraine
2Ukrainian State University of Science and Technologies, Dnipro,Ukraine
Coll.res.pap.nat.min.univ. 2024, 78:186–196
Full text (PDF)
https://doi.org/10.33271/crpnmu/78.186
ABSTRACT
Purpose. Investigation of the microbiological composition of vermicompost in comparison with compost obtained from solid organic biomass after methane fermentation using vermicompostsing and composting technologies.
Research methodology. The study of the comparative composition of the ecological and trophic groups of microorganisms of vermicompost and compost was carried out by standard bacteriological methods of sowing on Petri dishes with subsequent colony counting to determine the number of colony-forming units (CFU/ml). The research results were calculated by MS Office Exel.
Research results. The composition of the microflora of organic biomass subjected to biotransformation by applying the method of vermicomposting using the worms culture of Eisenia and composting was investigated. A number of different ecological and trophic groups of microorganisms have been identified, including ammonifiers, micromycetes, and actinomycetes, which play an important role in restoring and improving soil fertility. It was found that the biomass after vermicomposting, had an average of 2.2 times more different groups of microorganisms compared to compost on day 55 of the study, which indicates its value and quality in terms of use as a biofertilizer.
Originality. For the first time, a comparative analysis of the microflora of vermicultured and composted biomass obtained after methane fermentation was carried out. It was found that during the first two weeks (day 15) and at the end of the study (day 55), biohumus was characterized by a higher level of microorganisms of different ecological and trophic groups, namely ammonifiers, micromycetes and actinomycetes, compared to compost, which indicates the feasibility of using vermiculture technology for the utilization of organic waste of various origins compared to the composting process.
Practical implications. The biomass produced after methane fermentation after vermicomposting can be used to produce vermicompost within 55 days, which is one of the highest quality biofertilizers that allows for the cultivation of high-quality eco-products, plays a significant role in restoring and improving soil fertility. The remains of vermiculture representatives worms of Eisenia can be used in animal husbandry, which meets the requirements of a circular economy. Thus, the vermicomposting helps to reduce the level of anthropogenic impact on the environment.
Keywords: vermicompost, vermicomposting, composting, ecological and trophic groups of microorganisms, ammonifiers, micromycetes, actinomycetes, CFU/ml.
References
1. Firsova, V.E., Sitalo, A.V., & Myronova, I.H. (2023, 1–3 bereznia). Otsinka stanu gruntiv krain Yevropy ta rozrobka zakhodiv shchodo pidvyshchennia yikh rodiuchosti. Materialy 13-oi Vseukrainskoi nauk.-tekhn. konf. stud., aspirantiv ta molodykh vchenykh «Naukova vesna», Dnipro, Ukraina, 104–106.
2. Zhang, H., Li, J., Zhang, Y., & Huang, K. (2020). Quality of Vermicompost and Microbial Community Diversity Affected by the Contrasting Temperature during Vermicomposting of Dewatered Sludge. International Journal of Environmental Research and Public Health, 17(5), 1748. https://doi.org/10.3390/ijerph17051748
3. Lee, L. H., Wu, T. Y., Shak, K. P. Y., Lim, S. L., Ng, K. Y., Nguyen, M. N., & Teoh, W. H. (2018). Sustainable approach to biotransform industrial sludge into organic fertilizer via vermicomposting: a mini‐review. Journal of Chemical Technology & Biotechnology, 93(4), 925–935. Portico. https://doi.org/10.1002/jctb.5490
4. Senchuk, N. (2021). Introduction of mechanized vermicomposting for utilization of vegetable waste of horticultural farms. Agrobìologìâ, 2(167), 137–145. Internet Archive. https://doi.org/10.33245/2310-9270-2021-167-2-137-145
5. Didukh, V.F. (2022, 29–30 veresnia). Tekhnika i tekhnolohii pryhotuvannia kompostiv. Materialy Mizhnarodnoi naukovo-praktychnoi konferentsii «Protsesy, mashyny ta obladnannia ahropromyslovoho vyrobnytstva: problemy teorii ta praktyky», Ternopil, Ukraina, 12–15.
6. Diacono, M., Gebremikael, M. T., Testani, E., Persiani, A., Fiore, A., Alfano, V., Ciaccia, C., Montemurro, F., & DeNeve, S. (2024). Agricultural Waste Recycling in an Organic Zucchini-Lettuce Rotation: Soil Microbial Parameters Under Laboratory and Field Conditions, and Crop Production Parameters Assessment. Waste and Biomass Valorization, 15(12), 6941–6958. https://doi.org/10.1007/s12649-024-02637-7
7. Toop, T. A., Ward, S., Oldfield, T., Hull, M., Kirby, M. E., & Theodorou, M. K. (2017). AgroCycle – developing a circular economy in agriculture. Energy Procedia, 123, 76–80. https://doi.org/10.1016/j.egypro.2017.07.269
8. Raimi, A. R., Atanda, A. C., Ezeokoli, O. T., Jooste, P. J., Madoroba, E., & Adeleke, R. A. (2022). Diversity and predicted functional roles of cultivable bacteria in vermicompost: bioprospecting for potential inoculum. Archives of Microbiology, 204(5). https://doi.org/10.1007/s00203-022-02864-3
9. Munoz-Ucros, J., Panke-Buisse, K., & Robe, J. (2020). Bacterial community composition of vermicompost-treated tomato rhizospheres. PLOS ONE, 15(4), e0230577. https://doi.org/10.1371/journal.pone.0230577
10. Vyas, P., Sharma, S., & Gupta, J. (2022). Vermicomposting with microbial amendment: Implications for bioremediation of industrial and agricultural waste. BioTechnologia, 103(2), 203–215. https://doi.org/10.5114/bta.2022.116213
11. Vered, P.I., Melnychenko, O.M., & Zlochevskyi, M.V.(2023, 26 zhovtnia). Utylizatsiia orhanichnykh vidkhodiv metodom vermikultyvuvannia ta vyznachennia vmistu nitrativ u ahrarnii produktsii vyroshchenii za vykorystannia oderzhanoho biohumusu. Materialy mizhnarodnoi naukovo-praktychnoi konferentsii “Ekolohiia, okhorona navkolyshnoho seredovyshcha ta zbalansovane pryrodokorystuvannia: osvita – nauka – vyrobnytstvo”, Bila Tserkva, Ukraina, 7–9.
12. Kumar, R., Jha, S., Singh, S. P., Kumar, M., Kumari, R., & Padbhushan, R. (2023). Organic waste recycling by vermicomposting amended with rock phosphate impacts the stability and maturity indices of vermicompost. Journal of the Air & Waste Management Association, 73(7), 553–567. https://doi.org/10.1080/10962247.2023.2207504
13. Klymniuk, S.I,. Sytnyk, I.O., & Shyrobokov, V.P. (2018). Praktychna mikrobiolohiia: navchalnyi posibnyk (V.P. Shyrobokova & S.I. Klymniuka, za zah. red.). Vinnytsia, Nova knyha.
14. Kryvtsova, M.V., & Sikura, A.O. (2022). Sanitarna mikrobiolohiia. Uzhhorod, PP Danylo.
15. Miranda-Carrazco, A., Chávez-López, C., Ramírez-Villanueva, D. A., & Dendooven, L. (2022).Bacteria in (vermi)composted organic wastes mostly survive when applied to an arable soil cultivated with wheat (Triticum sp. L.). Environmental Monitoring and Assessment, 194(5). https://doi.org/10.1007/s10661-022-09996-5
16. Afanador-Barajas, L. N., Navarro-Noya, Y. E., Luna-Guido, M. L., & Dendooven, L. (2021). Impact of a bacterial consortium on the soil bacterial community structure and maize (Zea mays L.) cultivation. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-92517-0
17. Bhatti, A. A., Haq, S., & Bhat, R. A. (2017). Actinomycetes benefaction role in soil and plant health. Microbial Pathogenesis, 111, 458–467. https://doi.org/10.1016/j.micpath.2017.09.036
18. Teheran-Sierra, L. G., Funnicelli, M. I. G., de Carvalho, L. A. L., Ferro, M. I. T., Soares, M. A., & Pinheiro, D. G. (2021). Bacterial communities associated with sugarcane under different agricultural management exhibit a diversity of plant growth-promoting traits and evidence of synergistic effect. Microbiological Research, 247, 126729. https://doi.org/10.1016/j.micres.2021.126729
19. Allali, K., Goudjal, Y., Zamoum, M., Bouznada, K., Sabaou, N., & Zitouni, A. (2019). Nocardiopsis dassonvillei strain MB22 from the Algerian Sahara promotes wheat seedlings growth and potentially controls the common root rot pathogen Bipolaris sorokiniana. Journal of Plant Pathology, 101(4), 1115–1125. https://doi.org/10.1007/s42161-019-00347-x
20.van der Meij, A., Worsley, S. F., Hutchings, M. I., & van Wezel, G. P. (2017). Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiology Reviews, 41(3), 392–416. https://doi.org/10.1093/femsre/fux005
21. Solans, M., Messuti, M. I., Reiner, G., Boenel, M., Vobis, G., Wall, L. G., & Scervino, J. M. (2019). Exploring the response of Actinobacteria to the presence of phosphorus salts sources: Metabolic and co‐metabolic processes. Journal of Basic Microbiology, 59(5), 487–495. Portico. https://doi.org/10.1002/jobm.201800508
22. Devanshi, S., R. Shah, K., Arora, S., & Saxena, S. (2022). Actinomycetes as An Environmental Scrubber. Crude Oil – New Technologies and Recent Approaches. https://doi.org/10.5772/intechopen.99187
23. Donald, L., Pipite, A., Subramani, R., Owen, J., Keyzers, R. A., & Taufa, T. (2022). Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. Microbiology Research, 13(3), 418–465. https://doi.org/10.3390/microbiolres13030031
24. Liu, X-C., Chen, L., Li, S-Q, Shi, Q-H, &Wang, X-Y. (2021). Effects of vermicompost fertilization on soil, tomato yield and quality in greenhouse. Ying Yong Sheng Tai Xue Bao, 32(2), 549–556. https://doi.org/10.13287/j.1001-9332.202102.022
25. Krishnaswamy, V. G., Sridharan, R., Kumar, P. S., & Fathima, M. J. (2022). Cellulase enzyme catalyst producing bacterial strains from vermicompost and its application in low-density polyethylene degradation. Chemosphere, 288, 132552. https://doi.org/10.1016/j.chemosphere.2021.132552