№79-11
Changes in the geological environment in the territories of mining activities within Pavlohrad-Petropavlivka geological and industrial area
S. Honcharenko1
1Institute of Geological Sciences NAS of Ukraine, Kyiv, Ukraine
Coll.res.pap.nat.min.univ. 2024, 79:133–143
Full text (PDF)
https://doi.org/10.33271/crpnmu/79.133
ABSTRACT
Purpose. The aim of the study is to determine the most vulnerable mine of DTEK PAVLOHRADCOAL PRJSC to hazardous processes based on the analysis of existing processes caused by coal mining activities in the Pavlohrad-Petropavlivka geological-industrial area, with the goal of comparing it to mines with similar technical parameters that have experience in analyzing hazardous geological processes.
The methods. A combined approach has been applied to forecast changes in the geological environment of mine fields, incorporating methods like scientific research analysis, technical documentation, and comparative analysis. This approach identifies recurring patterns in similar geological and technical conditions, drawing from past events. The final stage, comparative analysis, helps develop typical scenarios for geological process evolution, enhancing the accuracy of forecasts regarding potential changes in the geological environment.
Findings. The analysis of common features in mine field studies has made it possible to form typical scenarios for the development of geological processes, improving the accuracy of forecasts of possible changes in the geological environment. Based on this, the dependence of mine parameters on the area and intensity of the development of hazardous engineering-geological processes on the earth's surface has been determined.
The originality. A systematic approach is proposed for the first time, which evaluates recurring patterns in similar conditions, using the experience of past events to forecast hazardous changes in the geological environment within coal mining activities. The relationship between mine parameters and the development of hazardous engineering-geological processes above the mine fields has been determined.
Practical implementation. The obtained data can be used for developing risk management strategies at mining enterprises, as well as for environmental and geotechnical studies on the impact of mining activities on the surrounding environment. It can also help in developing measures to minimize their impact and planning safe mining operations while considering potential risks that threaten public safety.
Keywords: coal mine, geological environment, engineering-geological processes, negative impact, subsidence.
References
1. Bateson, L., Cigna, F., Boon, D., & Sowter, A. (2015). The application of the Intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield, UK. International Journal of Applied Earth Observation and Geoinformation, 34, 249–257. https://doi.org/10.1016/j.jag.2014.08.018
2. Yin, X., Chai, J., Deng, W., Yang, Z., Tian, G., & Gao, C. (2023). Pointwise Modelling and Prediction for Ground Surface Uplifts in Abandoned Coal Mines from InSAR Observations. Remote Sensing, 15(9), 2337. https://doi.org/10.3390/rs15092337
3. Blachowski, J., Kopeć, A., Milczarek, W., & Owczarz, K. (2019). Evolution of Secondary Deformations Captured by Satellite Radar Interferometry: Case Study of an Abandoned Coal Basin in SW Poland. Sustainability, 11(3), 884. https://doi.org/10.3390/su11030884
4. Gee, D., Bateson, L., Sowter, A., Grebby, S., Novellino, A., Cigna, F., Marsh, S., Banton, C., & Wyatt, L. (2017). Ground Motion in Areas of Abandoned Mining: Application of the Intermittent SBAS (ISBAS) to the Northumberland and Durham Coalfield, UK. Geosciences, 7(3), 85. https://doi.org/10.3390/geosciences7030085
5. Samsonov, S., d’Oreye, N., & Smets, B. (2013). Ground deformation associated with post-mining activity at the French–German border revealed by novel InSAR time series method. International Journal of Applied Earth Observation and Geoinformation, 23, 142–154. https://doi.org/10.1016/j.jag.2012.12.008
6. Harnischmacher, S., & Zepp, H. (2014). Mining and its impact on the earth surface in the Ruhr District (Germany). Zeitschrift Für Geomorphologie, Supplementary Issues, 58(3), 3–22. https://doi.org/10.1127/0372-8854/2013/s-00131
7. Poulsen, B., & Shen, B. (2018). Surface subsidence from underground coal mining impacting residential housing: a case study of risk analysis, mitigation proposal and ongoing monitoring. Risk Analysis XI, 12, 209–220. https://doi.org/10.2495/risk180181
8. Vervoort, A. (2020). The Time Duration of the Effects of Total Extraction Mining Methods on Surface Movement. Energies, 13(16), 4107. https://doi.org/10.3390/en13164107
9. Pan, W., Li, X., & Zhan, Z. (2022). Strata Caving and Gob Evolution Characteristic in Longwall Mining. Shock and Vibration, 1, 1–11. https://doi.org/10.1155/2022/3235063
10. Zhang, L., Bai, K. Z., Wang, M. J., & Karthikeyan, R. (2015). Basin-scale spatial soil erosion variability: Pingshuo opencast mine site in Shanxi Province, Loess Plateau of China. Natural Hazards, 80(2), 1213–1230. https://doi.org/10.1007/s11069-015-2019-9
11. Zhuang, J., Peng, J., Zhu, Y., Leng, Y., Zhu, X., & Huang, W. (2020). The internal erosion process and effects of undisturbed loess due to water infiltration. Landslides, 18(2), 629–638. https://doi.org/10.1007/s10346-020-01518-z
12. Hladkyi, V. N., & Matviienko, E. M. (1958). Heolohichna karta SRSR masshtabu 1:200 000, arkush M-37-XXXI (Petropavlivska). Tsentralnoukrainska seriia. Poiasniuvalna zapyska. Ministerstvo heolohii ta okhorony nadr SRSR. Ukrainske heolohichne upravlinnia.
13. Hladkyi, V. N., & Matviienko, E. M. (1958). Heolohichna karta SRSR masshtabu 1:200 000, arkush M-37-XXXI (Petropavlivska). Tsentralnoukrainska seriia. Ministerstvo heolohii ta okhorony nadr SRSR. Ukrainske heolohichne upravlinnia.
14. Shpylchak, V., Maniuk, V., Sukach, V., & Nekriach, A. (2007). Derzhavna heolohichna karta Ukrainy masshtabu 1:200 000, arkush M-36-XXXVI (Dnipropetrovsk). Tsentralnoukrainska seriia. Poiasniuvalna zapyska. Ministerstvo okhorony navkolyshnoho pryrodnoho seredovyshcha Ukrainy, Derzhavna heolohichna sluzhba. Kazenne pidpryiemstvo "Pivdenukrheolohiia", UkrDHRI.
15. Shpylchak, V., Maniuk, V., Sukach, V., & Nekriach, A. (2007). Derzhavna heolohichna karta Ukrainy masshtabu 1:200 000, arkush M-36-XXXVI (Dnipropetrovsk). Tsentralnoukrainska seriia. Ministerstvo okhorony navkolyshnoho pryrodnoho seredovyshcha Ukrainy, Derzhavna heolohichna sluzhba. Kazenne pidpryiemstvo "Pivdenukrheolohiia", UkrDHRI.
16. Lysak, S. P. (2023). Ekolohichnyi pasport Dnipropetrovskoi oblasti za 2022 rik. Zatv. holovoiu oblderzhadministratsii – nachalnykom oblasnoi viiskovoi administratsii.
17. Shapovalova, K. (2022). Rehionalna dopovid pro stan navkolyshnoho pryrodnoho seredovyshcha v Dnipropetrovskii oblasti za 2022 rik.
18. Ghouzi, D. (1982). Mining subsidence and its impact on the environment: the example of the Nord/Pas-de-Calais coalfield. Minerals and the Environment, 4(2–3), 93–98. https://doi.org/10.1007/bf02086781
19. Bauer, R. (2008). Planned coal mine subsidence in Illinois: a public information booklet. Illinois State Geological Survey, 18.
20. Grzovic, M., & Ghulam, A. (2015). Evaluation of land subsidence from underground coal mining using TimeSAR (SBAS and PSI) in Springfield, Illinois, USA. Natural Hazards, 79(3), 1739–1751. https://doi.org/10.1007/s11069-015-1927-z
21. Guéguen, Y., Deffontaines, B., Fruneau, B., Al Heib, M., de Michele, M., Raucoules, D., Guise, Y., & Planchenault, J. (2009). Monitoring residual mining subsidence of Nord/Pas-de-Calais coal basin from differential and Persistent Scatterer Interferometry (Northern France). Journal of Applied Geophysics, 69(1), 24–34. https://doi.org/10.1016/j.jappgeo.2009.02.008
22. Zabielin, D. (2023). Zvit z otsinky vplyvu na dovkillia planovoi diialnosti "Dorobka zapasiv vuhillia plastiv s10V i s8N shakhty "Zakhidno-Donbaska" v blotsi № 2, roztashovanoi v Pavlohradskomu raioni Dnipropetrovskoi oblasti. Rekonstruktsiia".
23. Demchyshyn, M. H., & Kril, T. V. (2016) Otsinka stiikosti skhyliv z vykorystanniam metodiv 3D modeliuvannia. Budivelni konstruktsii, 83, 433–441.
24. Prymushko, S. I., Kovalenko, N. B., & Pyshna N. H. (2020). Informatsiinyi shchorichnyk shchodo aktyvizatsii nebezpechnykh ekzohennykh heolohichnykh protsesiv za danymy monitorynhu EHP – Kyiv. Derzhavna sluzhba heolohii ta nadr Ukrainy, Derzhavne naukovo-vyrobnyche pidpryiemstvo «Derzhavnyi informatsiinyi heolohichnyi fond Ukrainy».
25. Volkova, T. P., & Shylova, M. S. (2011). Inzhenerno-heolohichne kartuvannia Donetskoi oblasti. Naukovi pratsi UkrNDMI NAN Ukrainy,9, 203–215.
26. Goryainov, S., & Udalov, I. (2023). Anomalous position of Paleozoic faults of Western Donbas. Visnyk of V.N. Karazin Kharkiv National University, Series Geology. Geography. Ecology, 58, 38–48. https://doi.org/10.26565/2410-7360-2023-58-03