№79-18

Formation of the protective potential of underground steel pipelines in the context of the development of modern converter technologies

O. Aziukovskyi1, S.Shykhov1

1Dnipro University of Technology,Dnipro, Ukraine

Coll.res.pap.nat.min.univ. 2024, 79:210–221

Full text (PDF)

https://doi.org/10.33271/crpnmu/79.210

ABSTRACT

Goal. To study the processes of forming the protective potential of underground steel pipelines in the face of the development of modern converter technologies. To evaluate the influence of the output signal parameters of cathodic protection rectifiers on the electrochemical protection of steel underground pipelines.

Methodology. The computer modeling of electrochemical processes in underground steel pipelines under cathodic protection is performed. The spectral composition of the output signals of different types of rectifiers is analyzed. The influence of the waveform on the electrical system pipeline – soil– electrochemicalprotection is considered.

Research results. The paper demonstrates that pulsations in the output signal of rectifiers affect the value of the impedance of the pipeline, which can cause a local decrease in the efficiency of cathodic protection. The opportunity to purposefully control the power spectrum of the rectifier output signal in order to increase the efficiency of electrochemical protection is proposed. Which is especially useful in cases of heterogeneous pipeline structure or variable environmental conditions.

Scientific novelty. The correlation between the frequency characteristics of the output signal of the cathodic protection station rectifier and the processes of forming the protective potential of the pipeline is proved. The possibility of improving the performance of electrochemical protection and minimizing the negative effects of alternating current by optimizing the spectrum of the output signal is proposed.

Practical significance. The obtained results can be used to develop new algorithms for controlling cathodic protection stations for underground steel pipelines, which reduces energy costs and increase reliability. The proposed methods can be integrated into modern cathodic stations and taken into account when designing new pipeline protection systems.

Keywords: cathodic protection, underground steel pipelines, impedance, rectifiers, electrochemical protection, spectrum.

References

1. Plan Rozvytku Hazotransportnoi Systemy Tov "Operator HTS Ukrainy" na 2021–2030 roky, (2020). Kyiv https://tsoua.com/wp-content/uploads/2020/10/TYNDP-2021-2030-TSO-4.1.pdf

2. Protyazhnist ta struktura vlasnosti hazorozpodilnykh system.(2021). https://map.ua-energy.org/uk/resources/8ff9aac6-34e1-4932-ae4f-97f3896aed29/?_ga=2.244269381.1360191742.1718703785-274564711.1718703058

3. DBN B.2.2-12:2019 Planuvannya i zabudova terytoriy(2019). Kyiv, Ministry for Regional Development, Construction, and Housing and Communal Services of Ukraine.

4. DSTU B V.2.5-29:2006 Inzhenerne obladnannya budynkiv i sporud. Zovnishni merezhi ta sporudy. Systemy hazopostachannya. Hazoprovody pidzemni stalevi. Zahalni vymohy do zakhystu vid koroziyi(2007). Kyiv, Ministry of Construction of Ukraine.

5. Ahmad, Z. (2006). Principles of Corrosion Engineering and Corrosion Control. First edition. Butterworth-Heinemann (Elsevier), Amsterdam. https://doi.org/10.1016/b978-0-7506-5924-6.x5000-4

6. Yelwa, J. M., & Musa, H. (2024). Innovative smart coatings: advancing surface protection and sustainability across industries. Academia Nano: Science, Materials, Technology, 1(1). https://doi.org/10.20935/acadnano7343

7. Azyukovskyi, O. (2023). Vyznachennya strumu stikannya z pidzemnoho truboprovodu z vrakhuvannyam osnovnykh dzherel zburen dlya pidzemnykh metalevykh komunikatsiy. Elektrotekhnichni ta informatsiini systemy, (100), 19–24.

8. Peabody, A.W. (1967). Control of Pipeline Corrosion. NACE, Houston.

9. Lyon, S. B., Bingham, R., & Mills, D. J. (2017). Advances in corrosion protection by organic coatings: What we know and what we would like to know. Progress in Organic Coatings, 102, 2–7. https://doi.org/10.1016/j.porgcoat.2016.04.030

10. Morsch, S., Lyon, S., Greensmith, P., Smith, S. D., & Gibbon, S. R. (2015). Mapping water uptake in organic coatings using AFM-IR. Faraday Discussions, 180, 527–542. https://doi.org/10.1039/c4fd00229f

11. Nazeer, A. A., & Madkour, M. (2018). Potential use of smart coatings for corrosion protection of metals and alloys: A review. Journal of Molecular Liquids, 253, 11–22. https://doi.org/10.1016/j.molliq.2018.01.027

12. Mittal, V. (2014). Self-healing anti-corrosion coatings for applications in structural and petrochemical engineering. Handbook of Smart Coatings for Materials Protection, 183–197. https://doi.org/10.1533/9780857096883.2.183

13. Zhang, L., Li, R., Ding, H., Chen, D., & Wang, X. (2024). Preparation of a self-cleaning TiO2-SiO2/PFDTS coating with superamphiphobicity and photocatalytic performance. Progress in Organic Coatings, 197, 108767. https://doi.org/10.1016/j.porgcoat.2024.108767

14. Grigoriev, D., Shchukina, E., Tleuova, A., Aidarova, S., & Shchukin, D. (2016). Core/shell emulsion micro- and nanocontainers for self-protecting water based coatings. Surface and Coatings Technology, 303, 299–309. https://doi.org/10.1016/j.surfcoat.2016.01.002

15. Roberge, P.R. (2000). Handbook of Corrosion Engineering. New York, McGraw-Hill.

16. Evitts, R. W., & Kennell, G. F. (2018). Cathodic Protection. Handbook of Environmental Degradation of Materials, 301–321. https://doi.org/10.1016/b978-0-323-52472-8.00015-0

17. Ji, T., Liao, X., Zhang, S., He, Y., Zhang, X., Zhang, X., & Li, W. (2022). Cement-Based Thermoelectric Device for Protection of Carbon Steel in Alkaline Chloride Solution. Materials, 15(13), 4461. https://doi.org/10.3390/ma15134461

18. Sibiya, C. A., Numbi, B. P., & Kusakana, K. (2021). Modelling and Simulation of a Hybrid Renewable/Battery System Powering a Cathodic Protection Unit. International Journal of Electrical and Electronic Engineering & Telecommunications, 203–208. https://doi.org/10.18178/ijeetc.10.3.203-208

19. Pivniak H., Aziukovskyi O., Papaika Yu., Lutsenko I., & Neuberger N. (2022). Problems of development of innovative power supply systems of Ukraine in the context of European integration. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 89–103. https://doi.org/10.33271/nvngu/2022-5/089.

20. Guo, Y., Ding, J., Li, X., & Li, J. (2021). Study of Impressed Current Cathodic Protection (ICCP) on the Steel Pipeline under DC Stray Current Interference. International Journal of Electrochemical Science, 16(5), 210547. https://doi.org/10.20964/2021.05.59

21. Brenna, A., Beretta, S., & Ormellese, M. (2020). AC Corrosion of Carbon Steel under Cathodic Protection Condition: Assessment, Criteria and Mechanism. A Review. Materials, 13(9), 2158. https://doi.org/10.3390/ma13092158

22. Kim, Y.-S., Seok, S., Lee, J.-S., Lee, S. K., & Kim, J.-G. (2018). Optimizing anode location in impressed current cathodic protection system to minimize underwater electric field using multiple linear regression analysis and artificial neural network methods. Engineering Analysis with Boundary Elements, 96, 84–93. https://doi.org/10.1016/j.enganabound.2018.08.012

23. Sun, H., Wei, L., Zhu, M., Han, N., Zhu, J.-H., & Xing, F. (2016). Corrosion behavior of carbon fiber reinforced polymer anode in simulated impressed current cathodic protection system with 3% NaCl solution. Construction and Building Materials, 112, 538–546. https://doi.org/10.1016/j.conbuildmat.2016.02.141

24. Qiao, G., Guo, B., Ou, J., Xu, F., & Li, Z. (2016). Numerical optimization of an impressed current cathodic protection system for reinforced concrete structures. Construction and Building Materials, 119, 260–267. https://doi.org/10.1016/j.conbuildmat.2016.05.012

25. Pfeiffer, R. A., Young, J. C., Adams, R. J., & Gedney, S. D. (2019). Higher-order simulation of impressed current cathodic protection systems. Journal of Computational Physics, 394, 522–531. https://doi.org/10.1016/j.jcp.2019.06.008

26. Aziukovskyi A. (2013). The electrochemical cathodic protection stations of underground metal pipelines in uncoordinated operation mode. Energy Efficiency Improvement of Geotechnical Systems – Proceedingsof the International Forum on Energy Efficiency, 47–55. https://doi.org/10.1201/b16355-7.

27. Abbassen, L. & Benamrouche, N. (2023). Design and Simulation of a Cathodic Protection System at impressed current control. The first International Conference on Electrical Engineering and Advanced Technologies ICEEAT23. https://www.researchgate.net/publication/375594536_Design_and_Simulation_of_a_Cathodic_Protection_System_at_impressed_current_control

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

1104246
Today
This month
Total
207
10116
1104246