№80-26

Evaluation of thermal conductivity and stability of thermal insulation materials for buildingsbased on the steady-state heat flow method

R. Dychkovskyi1, A. Pavlychenko1, M. Kononenko1, S. Dybrin1

1Dnipro University of Technology, Dnipro, Ukraine

Coll.res.pap.nat.min.univ. 2025, 80:275–287

Full text (PDF)

https://doi.org/10.33271/crpnmu/80.275

ABSTRACT

Purpose. Determination of the thermal conductivity and stability of thermal insulation materials using the steady-state heat flow approach, which allows for assessing the materials' efficiency in heat retention, their durability, and resistance to external environmental changes– key factors for improving the energy efficiency of buildings and structures.

Methods. To achieve the stated objective, the authors, based on an analysis of scientific literature and mathematical approaches to assessing the thermal conductivity and stability of thermal insulation materials, applied the steady-state heat flow method, which made it possible to determine their thermal conductivity coefficient under various temperatures and operating conditions, as well as to evaluate their mechanical stability and changes in properties under prolonged heating and cyclic thermal loading.

Results. The feasibility and rationale for the development of thermal insulation materials have been substantiated, thermal conductivity values have been determined, mechanical stability under heating and thermal cycles has been assessed, the composition has been optimized to ensure low thermal conductivity and strength, and recommendations for their effective application in construction and industry have been developed.

Originality. Consists in the systematization and scientific substantiation of the implementation of technologies for the development of thermal insulation materials, taking into account the impact of temperature and operating conditions, the assessment of their mechanical stability under prolonged heating and cyclic thermal loading, the establishment of the relationship between the variation of maximum equivalent stress values and the height of the studied structures, as well as the optimization of material composition to achieve the best balance between low thermal conductivity and high mechanical strength.

Practical implication. The development of mathematical approaches for evaluating the effectiveness of thermal insulation materials, which ensure increased energy efficiency of buildings and structures, reduce energy consumption and heating costs, as well as possess high mechanical stability and durability under variable temperature conditions, making them suitable for widespread use in construction and industry.

Keywords: thermal insulation material, energy efficiency, thermal conductivity, mechanical stability, durability, temperature conditions, construction.

References

1. Ryndiuk, S.V. (2018). Metod vyznachennia teploprovidnosti budivelnykh materialiv ta vyrobiv. Dysertatsiia. Vinnytskyi natsionalnyi tekhnichnyi universytet.

2. DSTU B V.2.7-105-2000. Materialy i vyroby budivelni. Metod vyznachennia teploprovidnosti i termichnoho oporu pry statsionarnomu teplovomu rezhymi.

3. Ratushniak, H., Biks, Yu., & Lialiuk, A. (2022). Eksperymentalni doslidzhennia teploprovidnosti teploizoliatsiinykh materialiv iz mineralnoi vaty. Suchasni tekhnolohii, materialy i konstruktsii v budivnytstvi, 19(1), 12–42.

4. Polyanska, A., Savchuk, S., Dudek, M., Sala, D., Pazynich, Y., & Cicho, D. (2022). Impact of digital maturity on sustainable development effects in energy sector in the condition of Industry 4.0. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 97–103. https://doi.org/10.33271/nvngu/2022-6/097

5. Cry, C. M. (1996). The potential use of waste (ash) materials for EIFS insulation and related components. Fuel and Energy Abstracts, 37(3), 187. https://doi.org/10.1016/0140-6701(96)88612-7

6. Kicki, J., Jarosz, J., Dyczko, A., & Puszcza, H. (2005). The economic and technical aspects of mine closure in Poland. Proceedings of the 14th International Symposium on Mine Planning and Equipment Selection, MPES 2005 and the 5th International Conference on Computer Applications in the Minerals Industries, CAMI 2005, 625-631.

7. Adekanye, O. G., Davis, A., & Azevedo, I. L. (2020). Federal policy, local policy, and green building certifications in the U.S. Energy and Buildings, 209, 109700. https://doi.org/10.1016/j.enbuild.2019.109700

8. Dychkovskyi, R.O. (2015). Determination of the rock subsidence spacing in the well underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu6, 30–36.

9. Fedoreiko, V.S., Rutylo, M.I., Iskerskyi, I.S., & Zahorodnii, R.I. (2020). Optimization of heat production processes in the biofuel vortex combustion systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 83–88. https://doi.org/10.33271/nvngu/2020-6/083

10. Chmura, D., Jagodziński, A. M., Hutniczak, A., Dyczko, A., & Woźniak, G. (2022). Novel Ecosystems in the Urban-Industrial Landscape–Interesting Aspects of Environmental Knowledge Requiring Broadening: A Review. Sustainability, 14(17), 10829. https://doi.org/10.3390/su141710829

11. Smith, R. E., Alcott, J. M., & Mazor, M. H. (2014). Design Considerations for Sustainable Extruded Polystyrene (XPS) Thermal Insulation. Next-Generation Thermal Insulation Challenges and Opportunities, 1–12. https://doi.org/10.1520/stp157420130089

12. Yuan, J., Farnham, C., & Emura, K. (2017). Optimal combination of thermal resistance of insulation materials and primary fuel sources for six climate zones of Japan. Energy and Buildings, 153, 403–411. https://doi.org/10.1016/j.enbuild.2017.08.039

13. Abdrakhimov, V. Z. (2021). Environmental management, economic and practical aspects of the use of waste from the fuel and energy complex in the production of thermal insulation materials. Economy, Governance and Lave Basis, 1, 11–16. https://doi.org/10.51608/23058641_2021_1_11

14. Restuccia, L., Reggio, A., Ferro, G. A., & Tulliani, J.-M. (2017). New self-healing techniques for cement-based materials. Procedia Structural Integrity, 3, 253–260. https://doi.org/10.1016/j.prostr.2017.04.016

15. Sala, D., Pavlov, K., Pavlova, O., Dychkovskyi R., Ruskykh, V., & Pysanko, S. (2023). Determining the Level of Efficiency of Gas Distribution Enterprises in the Western Region of Ukraine. Inżynieria Mineralna, 2(2(52)), 109–122. https://doi.org/10.29227/im-2023-02-64

16. Fedoreiko, V. (2024). Distributed energy generation based on jet-vortex bioheat generators. E3S Web of Conferences, 567, 01001. https://doi.org/10.1051/e3sconf/202456701001

17. Dychkovskyi, R.O. (2015). Forming the bilayer artificially created shell of georeactor in underground coal well gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 37–42.

18. Latif, E., Bevan, R., & Woolley, T. (2019). Retrofit, renovation and fuel poverty initiatives: insulation materials. Thermal Insulation Materials for Building Applications, 155–180. https://doi.org/10.1680/timfba.63518.155

19. Polyanska, A., Cichoń, D., Verbovska, L., Dudek, Sala, D.,&Martynets, V. (2022). Waste management skills formation in modern conditions: the example of Ukraine. Financial and Credit Activity: Problems of Theory and Practice, 4(45), 322–334. https://doi.org/10.55643/fcaptp.4.45.2022.3814

20. Loftus, J. J. (1969). Noncombustibility of mineral wool and glass fiber insulation materials. National Bureau of Standards, 342. https://doi.org/10.6028/nbs.rpt.9988

21. Lewicka, B., & Lewicka, D. (2019). Environmental risk management in the context of environmental management systems for agriculture based on the ISO 14001:2015 standard. Acta Innovations, 33, 63–72. https://doi.org/10.32933/actainnovations.33.6

22. Dudek, M. (2014). The model for the calculation of the dispersed iron ore resource purchase cost in the world class manufacturing (WCM) logistics pillar context. Metalurgija, 53(4), 567–570.

23. Dychkovskyi, R., Saik, P., Sala, D., & Cabana, E. C. (2024). The current state of the non-ore mineral deposits mining in the concept of the Ukraine reconstruction in the post-war period. Mineral Economics, 37(3), 589–599. https://doi.org/10.1007/s13563-024-00436-z

24. Dychkovskyi, R., Falshtynskyi, V., Ruskykh, V., Cabana, E., & Kosobokov, O. (2018). A modern vision of simulation modelling in mining and near mining activity. E3S Web of Conferences, 60, 00014. https://doi.org/10.1051/e3sconf/20186000014

25. Myronova, I., & Mіlyutinа, V. (2021). Assessment of the ecological condition of the residential area of Dnipro city. Collection of Research Papers of the National Mining University, 66, 254–266. https://doi.org/10.33271/crpnmu/66.254

26. Kononenko, M., Khomenko, O., Kosenko, A., Myronova, I., Bash, V. & Pazynich, Yu. (2024). Raises advance using emulsion explosives. E3S Web of Conferences, 526, 01010. https://doi.org/10.1051/e3sconf/202452601010

27. Karnaukhov, A.V., & Riabokon, V.I. (2022). Perspektyvy vykorystannia promyslovykh vidkhodiv u vyrobnytstvi budivelnykh materialiv. Visnyk budivnytstva ta arkhitektury, 5, 17–31.

28. Kononenko, M., Khomenko, O., & Kosenko, A. (2022). Numerical simulation of the line of least resistanceduring the explosion of charges. Collection of Research Papers of the National Mining University, 69, 43–57. https://doi.org/10.33271/crpnmu/69.043

29. Yaremenko, H. S. (2021). Teploizoliatsiini vlastyvosti materialiv z promyslovykh vidkhodiv. Tekhnolohii budivnytstva, 45, 32–41.

30. Dovhal, I. M., & Savchuk, M. I. (2022). Matematychne modeliuvannia protsesiv teploperedachi u budivelnykh materialakh. Prohresyvni materialy ta tekhnolohii, 4, 21–28.

31. Kovalenko, O.V. (2021). Metody vyznachennia koefitsiienta teploprovidnosti teploizoliatsiinykh materialiv. Budivnytstvo ta enerhoefektyvnist, 3, 56–67.

32. Kononenko, M., Khomenko, O., Sadovenko, I., & Sobolev, V. (2023). Mathematical simulation of rock mass destruction zones by explosion. Collection of Research Papers of the National Mining University, 72, 40–52. https://doi.org/10.33271/crpnmu/72.040

33. Pankevych, O. D., & Humenchuk, A. Ye. (2022). Efektyvni teploizoliatsiini materialy ta yikh vykorystannia v budivnytstvi. Vinnytskyi natsionalnyi tekhnichnyi universytet, 6, 1–22.

34. Lemeshev, M. S., Khrystych, O. V., & Lemishko, K. K. (2019). Ekolohichno efektyvni budivelni materialy dlia teplomodernizatsii budivel. Vinnytskyi natsionalnyi tekhnichnyi universytet, 5, 23–44.

35. Dudar, I.N., & Ryndiuk, S.V. (2023). Enerhoefektyvni materialy ta konstruktsii dlia teplovoho zakhystu budivel i sporud. Vinnytskyi natsionalnyi tekhnichnyi universytet.

36. Kononenko, M., Khomenko, O., Sadovenko, I., Sobolev, V., Pazynich, Yu., & Smolinski, A. (2023). Managing the rock mass destruction under the explosion. Journal of sustainable mining, 22(3), 240–247. https://doi.org/10.46873/2300-3960.1391

37. Worbs, H. (1987). Utilization of Energy Code Compliance Procedures for the Prediction of Commercial Building Annual Fuel Consumption. Thermal Insulation: Materials and Systems, 8–20. https://doi.org/10.1520/stp18470s

38. Khomenko, O., Kononenko, M., Myronova, I., & Sudakov, A. (2018). Increasing ecological safety during underground mining of iron-ore deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 29–38. http://doi.org/10.29202/nvngu/2018-2/3

39. Velychko, N. O. (2023). Aliumosylikaty u vyrobnytstvi enerhoefektyvnykh materialiv. Ekolohichni tekhnolohii, 3, 24-41.

40. KononenkoM., KhomenkoO., MyronovaI., & KovalenkoI. (2022). Economic and environmental aspects of using mining equipment and emulsion explosives for ore mining. Mining Machines, 40(2), 88–97. https://doi.org/10.32056/KOMAG2022.2.4

41. Polyanska, A., Pazynich, Y., Mykhailyshyn, K., Babets, D., & Toś, P. (2024). Aspects of energy efficiency management for rational energy resource utilization. Rudarsko-Geološko-Naftni Zbornik, 39(3), 13–26. https://doi.org/10.17794/rgn.2024.3.2

42. Mizuno, M., Kokai T., & Koho. J. (2003). Method and apparatus for thermal decomposition of waste plastics for fuel manufacturing. Fuel and Energy Abstracts, 44(2), 121. https://doi.org/10.1016/s0140-6701(03)90938-6

43. Sugimoto, Y. (1992). Thermal decomposition of waste plastics and vacuum bottom. Canada Centre for Mineral and Energy Technology, Energy Research Laboratories Report, 92–100, 125. https://doi.org/10.4095/304562

Innovation and technology

 

Дослідницька платформа НГУ

 

Visitors

1205262
Today
This month
Total
458
10901
1205262